NEERC13 Problem H.Hack Protection
Solution
注意到题目中的区间与,在左端点lll确定的情况下,对于所有r≥lr\geq lr≥l,ANDl,rAND_{l,r}ANDl,r只有logloglog种取值,这是一个极为常见的性质。
于是我们从大到小枚举lll,可以维护每一位什么时候变成000,即可求出每一段(li,ri,xi)(l_i,r_i,x_i)(li,ri,xi)表示ANDl,t∈[li,ri]=xiAND_{l,t\in [l_i,r_i]}=x_iANDl,t∈[li,ri]=xi,用异或前缀和SiS_iSi表示ANDl,t=StxorSl−1AND_{l,t}=S_t\ xor\ S_{l-1}ANDl,t=St xor Sl−1,就变成求St=Sl−1xorxi,t∈[l,r]S_t=S_l-1\ xor \ x_i,t\in[l,r]St=Sl−1 xor xi,t∈[l,r]的个数,直接离散化之后用vectorvectorvector维护即可。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=200005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
ll ans=0;
map<int,int> Map;
vector<int> V[MAXN];
int nxt[35],a[MAXN],s[MAXN];
set<PR> Set;
int solve(int l,int r,int x)
{if (l>r||!Map.count(x)) return 0;int t=Map[x];return lower_bound(V[t].begin(),V[t].end(),-l+1)-lower_bound(V[t].begin(),V[t].end(),-r);
}
signed main()
{
// freopen("hack.in","r",stdin);
// freopen("hack.out","w",stdout);int n=read(),num=0;for (int i=1;i<=n;i++) {a[i]=read(),s[i]=s[i-1]^a[i];if (!Map.count(s[i])) Map[s[i]]=++num;}for (int i=0;i<31;i++) nxt[i]=n+1,Set.insert(MP(n+1,i));for (int i=n;i>=1;i--){for (int j=0;j<31;j++) if (!((a[i]>>j)&1)) Set.erase(MP(nxt[j],j)),nxt[j]=i,Set.insert(MP(nxt[j],j));V[Map[s[i]]].PB(-i);int lst=i,nw=(oo-1)<<1|1;for (set<PR>::iterator it=Set.begin();it!=Set.end();++it) ans+=solve(lst,(it->fi)-1,s[i-1]^nw),nw^=(1<<(it->se)),lst=(it->fi);ans+=solve(lst,n,s[i-1]^nw);}printf("%lld\n",ans);return 0;
}