NEERC 17 G.The Great Wall
Solution
这题的第一步tricktricktrick是:我们注意到取a,b,ca,b,ca,b,c的集合两两不交且并集为UUU,因此确定了b,cb,cb,c之后可以简单地唯一确定aaa,于是我们通过让bi−=ai,ci−=ai,Ans+=∑aib_i-=a_i,c_i-=a_i,Ans+=\sum a_ibi−=ai,ci−=ai,Ans+=∑ai来削减一维。
然后令bi′=∑j=1ibib'_i=\sum_{j=1}^ib_ibi′=∑j=1ibi,ci′=∑j=1icic'_i=\sum_{j=1}^ic_ici′=∑j=1ici,二分答案kkk。
- 当x+r−1≥yx+r-1\geq yx+r−1≥y,sum=cx+r−1′−cy−1′+by−1′−bx−1′+by+r−1′−bx+r−1′=(cx+r−1′−bx−1′−bx+r−1′)+(−cy−1′+by−1′+by+r−1′)≤ksum=c'_{x+r-1}-c'_{y-1}+b'_{y-1}-b'_{x-1}+b'_{y+r-1}-b'_{x+r-1}=(c'_{x+r-1}-b'_{x-1}-b'_{x+r-1})+(-c'_{y-1}+b'_{y-1}+b'_{y+r-1})\leq ksum=cx+r−1′−cy−1′+by−1′−bx−1′+by+r−1′−bx+r−1′=(cx+r−1′−bx−1′−bx+r−1′)+(−cy−1′+by−1′+by+r−1′)≤k,可以简单地用二维数点解决。
- 当x+r−1<yx+r-1<yx+r−1<y,sum=(bx+r−1′−bx−1′)+(by+r−1′−by−1′)≤ksum=(b'_{x+r-1}-b'_{x-1})+(b'_{y+r-1}-b'_{y-1})\leq ksum=(bx+r−1′−bx−1′)+(by+r−1′−by−1′)≤k,同样可以简单地用二维数点解决。
时间复杂度O(nlg2n)O(n lg^2n)O(nlg2n)。
Code
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=600005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline ll read()
{ll f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
int n,r,s[MAXN];
ll p[MAXN],b[MAXN],c[MAXN],B[MAXN],a[MAXN],k;
void add(int x,int y) { if (!x) return; for (;x<=n-r+1;x+=x&(-x)) s[x]+=y; }
int query(int x) { upmin(x,n-r+1); int ans=0; for (;x;x-=x&(-x)) ans+=s[x]; return ans; }
ll solve1(ll x)
{ll ans=0;for (int i=1;i<=n-r+1;i++) B[i]=p[i]=-c[i-1]+b[i-1]+b[i+r-1];sort(p+1,p+n-r+2);for (int i=1;i<=n-r+1;i++) B[i]=lower_bound(p+1,p+n-r+2,B[i])-p;for (int i=1;i<=r-1;i++) add(B[i],1);for (int i=1;i<=n-r+1;i++){add(B[i],-1);if (i<=n-r-r+2) add(B[i+r-1],1);ans+=query(upper_bound(p+1,p+n-r+2,x-(c[i+r-1]-b[i-1]-b[i+r-1]))-p-1);}return ans;
}
ll solve2(ll x)
{ll ans=0;for (int i=1;i<=n-r+1;i++) B[i]=p[i]=b[i+r-1]-b[i-1];sort(p+1,p+n-r+2);for (int i=1;i<=n-r+1;i++) B[i]=lower_bound(p+1,p+n-r+2,B[i])-p;for (int i=r;i<=n-r+1;i++) add(B[i],1);for (int i=1;i<=n-r+1;i++){if (i<=n-r-r+2) add(B[i+r-1],-1);ans+=query(upper_bound(p+1,p+n-r+2,x-(b[i+r-1]-b[i-1]))-p-1);}return ans;
}
signed main()
{ll sum=0;n=read(),r=read(),k=read();for (int i=1;i<=n;i++) a[i]=read(),sum+=a[i];for (int i=1;i<=n;i++) b[i]=read()-a[i]+b[i-1];for (int i=1;i<=n;i++) c[i]=read()-a[i]+c[i-1];ll l=0,r=1000000ll*n;while (l<r){ll mid=(l+r)>>1,t=solve1(mid)+solve2(mid);if (t>=k) r=mid;else l=mid+1;}printf("%lld\n",r+sum);return 0;
}