C. Orac and LCM
思路
题目非常简单,就是求gcd(lcm(i,j))foriinrange(n),forjinrange(n),i<jgcd(lcm_(i,\ j))\ for\ i\ in\ range(n),\ for\ j\ in\ range(n),\ i\ <\ jgcd(lcm(i, j)) for i in range(n), for j in range(n), i < j
对于包含a1a_1a1的项有,gcd(lcm1,2,lcm1,3,lcm1,4,……,lcm1,n−1,lcm1,n)gcd\ (lcm_{1,2}, lcm_{1, 3}, lcm_{1, 4}, ……, lcm_{1, n - 1}, lcm_{1, n})gcd (lcm1,2,lcm1,3,lcm1,4,……,lcm1,n−1,lcm1,n)
由于每一项都包含a1a_1a1,所以整体的gcd=lcm(a1,gcd(a2,a3,a4,……,an−1,an))gcd\ = lcm(a_1 , gcd(a_2, a_3, a_4, ……, a_{n - 1}, a_{n}))gcd =lcm(a1,gcd(a2,a3,a4,……,an−1,an))
同样的其最后的GCDGCDGCD就是这nnn项的gcdgcdgcd的共同的gcdgcdgcd,通样的对于所有的gcd(ai……an)gcd(a_i …… a_n)gcd(ai……an)我们可以通过对原数组从后开始求gcdgcdgcd,求得。
正确代码
#include <bits/stdc++.h>using namespace std;typedef long long ll;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();} while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int N = 1e5 + 10;ll a[N], b[N];
int n;ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;
}ll lcm(ll a, ll b) {return a * b / gcd(a, b);
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);n = read();for(int i = 1; i <= n; i++)a[i] = read();for(int i = n; i >= 1; i--) b[i] = gcd(b[i + 1], a[i]);ll ans = 0;for(int i = 1; i <= n; i++)ans = gcd(ans, lcm(a[i], b[i + 1]));printf("%lld\n", ans);return 0;
}
一个不会优化的代码
大概思路就是只有当一个质因子在最少n - 1个数中出现过,其对整体的gcdgcdgcd才有贡献,所以我们只需要统计这些质因子出现的次数,一个质因子出现了n−1n - 1n−1次,即是他的最小次方的出现项对整体有贡献,如果一个数出现了nnn次,即是他的次二小次方项对整体有贡献。
但是这个代码的复杂度过高了,优化不出来O(200000∗(200000以内的质数个数))O(200000 * (200000以内的质数个数))O(200000∗(200000以内的质数个数))
#include<bits/stdc++.h>using namespace std;typedef long long ll;
const int N = 2e5 + 10;int prime[N], n, cnt, flag[N];
vector<ll> num[N];
bool st[N];void init() {st[0] = st[1] = true;for(int i = 2; i < N; i++) {if(!st[i]) prime[cnt++] = i;for(int j = 0; j < cnt && prime[j] * i < N; j++) {st[i * prime[j]] = true;if(i % prime[j] == 0) break;}}
}int main() {// freopen("in.txt", "r", stdin);scanf("%d", &n);init();int t;for(int i = 0; i < n; i++) {scanf("%d", &t);for(int j = 0; prime[j] <= t; j++) {ll sum = 1;while(t % prime[j] == 0) {t /= prime[j];sum *= prime[j];}if(sum != 1) {flag[j]++;num[j].push_back(sum);}}}ll ans = 1;for(int i = 0; i < cnt; i++) {if(flag[i] == n - 1) {sort(num[i].begin(), num[i].end());ans *= num[i][0];}if(flag[i] == n) {sort(num[i].begin(), num[i].end());ans *= num[i][1];}}printf("%lld\n", ans);return 0;
}