Modular Stability
思路
(((xmoda1)moda2)……modak−1)modak=(((xmodp1)modp2)……modpk−1)modpk(((x \mod a_1) \mod a_2) …… \mod a_{k - 1}) \mod a_{k} = (((x \mod p_1) \mod p_2) …… \mod p_{k - 1}) \mod p_{k}(((xmoda1)moda2)……modak−1)modak=(((xmodp1)modp2)……modpk−1)modpk,其中ppp数组是aaa数组的任意的排列。
这里的最小的aia_iai一定是决定最后答案的,所以我们后面的ai+……a_{i + ……}ai+……一定是最小aia_iai的倍数,我们假定最小的数是a1a_1a1,我们只需要去枚举最小的数,然后求得剩下的数中,可以选出k−1k - 1k−1个满足要求的数有多少个即C(n/a1−1,k−1)C(n / a_1 - 1, k - 1)C(n/a1−1,k−1),这里就正好用到我前几天写的板子了。
代码
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_backusing namespace std;typedef pair<int, int> pii;
typedef long long ll;
typedef unsigned long long ull;const double eps = 1e-7;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();} while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}const int mod = 998244353;
const int N = 5e5 + 10;ll fac[N], inv[N];ll qpow(ll a, int n) {ll ans = 1;while(n) {if(n & 1) ans = (ans * a) % mod;a = (a * a) % mod;n >>= 1;}return ans;
}ll C(int n, int m) {if(n < 0 || m < 0 || m > n) return 0;if(m == 0 || m == n) return 1;return ((fac[n] * inv[m]) % mod * inv[n - m]) % mod;
}void init() {fac[0] = 1;for(int i = 1; i < N; i++)fac[i] = (fac[i - 1] * i) % mod;inv[N - 1] = qpow(fac[N - 1], mod - 2);for(int i = N - 2; i >= 0; i--)inv[i] = (inv[i + 1] * (i + 1)) % mod;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);init();int n = read(), k = read();ll ans = 0;for(int i = 1; i <= n; i++) {ans += C(n / i - 1, k - 1);ans %= mod;}printf("%lld\n", ans);return 0;
}