Codeforces Round #653 (Div. 3)
Required Remainder
Thinking(binary search)
既然是找最大值问题,我又懒得去推式子,于是我直接就上了一个二分,二分写法比结论稍微繁琐了一点吧,但是还是挺好想的。
根据题意,我们的任务就是找到一个最大的数,满足ans=k∗x+y<=nans = k * x + y <= nans=k∗x+y<=n,于是我们就可以通过二分枚举kkk,来得到我们的答案。通过题目给定的x,y,zx, y, zx,y,z的范围,我们可以确定二分的区间最多不过0190 ~ 1^90 19。
Coding
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_backusing namespace std;typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-7;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (48 ^ c);c = getchar();}return f * x;
}const int N = 1e6 + 10;char str[N];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int _ = read();while(_--) {ll x = read(), y = read(), n = read();ll l = 0, r = 1e9 + 10;while(l < r) {ll mid = l + r + 1 >> 1;if(mid * x + y <= n) l = mid;else r = mid - 1;}printf("%lld\n", l * x + y);}return 0;
}
Multiply by 2, divide by 6
Thinking
判断能否通过0个或者多个乘二的操作,使数字变成6的倍数。我们想想6的两个质因子2,32, 32,3,要想达到这个目的,对于初始的nnn,只可能有这两种质因子,否则我们一定达不到我们的目标。于是我们可以先对nnn,进行2,32, 32,3的质因数提取,假设得到的222的因子个数是num2num2num2, 333的因子个数是num3num3num3,因为我们是同时消去2,32, 32,3因子的,并且只能增加或者不增加222的因子个数,所以只有当num2<=num3num2 <= num3num2<=num3时,才能保证我们可以消去所有的2,32, 32,3因子,最后变成111。
Coding
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_backusing namespace std;typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-7;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (48 ^ c);c = getchar();}return f * x;
}const int N = 1e6 + 10;char str[N];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int _ = read();while(_--) {ll n = read();int num2 = 0, num3 = 0;while(n % 3 == 0) {n /= 3;num3++;}while(n % 2 == 0) {n /= 2;num2++;}//最后n不是1说明还存在其他的质因子。if(n != 1 || num2 > num3) puts("-1");else printf("%d\n", num3 + num3 - num2);}return 0;
}
Move Brackets
Thinking(Stack)
我们先找到所有的符合匹配的括号,最后就只剩下一种非法的括号了,以这种形式存在)() ()(形成)))))((((()))))((((()))))(((((这样的排列,所以我们只需要将其后面的移到前面去,或者前面的移到后面去,任选一种进行操作,因此我们的花费将会是最后无法匹配的括号的对数,也就是栈中的元素的一半。
Coding
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_backusing namespace std;typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-7;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (48 ^ c);c = getchar();}return f * x;
}const int N = 1e6 + 10;char str[N];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int _; cin >> _;while(_--) {int n; cin >> n;stack<char> stk;for(int i = 1; i <= n; i++) {char temp; cin >> temp;if(stk.empty() || stk.top() == temp || temp == '(') stk.push(temp);else stk.pop();}printf("%d\n", stk.size() / 2);}return 0;
}
Zero Remainder Array
Thinking
对于给定的序列,我们需要的就是x(modk)=(1,2……k−2,k−1)x \pmod k = (1, 2 …… k - 2, k - 1)x(modk)=(1,2……k−2,k−1),这样的数,才能使我们的序列变成都是kkk的倍数,假定k=4k = 4k=4,数组中存在两个数分别为3,73, 73,7, 他们有一个共同点3(modk)=7(modk)3 \pmod k \ = 7 \pmod k3(modk) =7(modk),也就是说我们在x(modk)x \pmod kx(modk)从0−>k−10 -> k - 10−>k−1,的一趟循环中,最多只能使其中的一个数变成ai(modk)=0a_i \pmod k = 0ai(modk)=0,想必看到这里应该就搞懂了这道题了,我们就是要找到ai(modk)a_i \pmod kai(modk)后出现的次数最多的非零数,当有多个出现次数相同的数时我们取ai(modk)a_i \pmod kai(modk)的最小值,因为那个最小值一定是当xxx足够大的时候才会满足条件。
Coding
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_backusing namespace std;typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-7;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (48 ^ c);c = getchar();}return f * x;
}const int N = 2e5 + 10;int a[N];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int _ = read();while(_--) {int n = read(), k = read();for(int i = 1; i <= n; i++) {a[i] = read();a[i] %= k;}sort(a + 1, a + 1 + n, greater<int> ());int now_num = 1, ansn = a[1], num = 1;for(int i = 2; i <= n && a[i] != 0; i++) {if(a[i] == a[i - 1]) now_num++;else now_num = 1;if(now_num >= num) ansn = a[i], num = now_num;}if(ansn == 0){puts("0");continue;}// cout << num << " " << ansn << endl;printf("%lld\n", 1ll * k * (num - 1) + k - ansn + 1);}return 0;
}
Reading Books (easy version)
Thinking(Sort, greedy)
题意这里就不说明了,对于给定的条件,我们要同时满足AliceandBobAlice and BobAliceandBob都要读至少kkk本书,所以我们可以指定一个策略,不管这本书是AliceorBobAlice or BobAliceorBob喜欢,还是他们两同时喜欢,我们都同时增加AliceandBobAlice and BobAliceandBob的当前的书的数量,因此在之前我们就需要对书本分类AliceAliceAlice喜欢的数组a,BobBobBob喜欢的数组b,两个人都喜欢的数组c。接下来就时对这三个数组分别按照元素大小从小到大进行排序
当我们当前枚举的ai+bj<=cka_i + b_j <= c_kai+bj<=ck时我们显然贪心的选择ai,bja_i, b_jai,bj这两本书,所以我们的总花费将会变成ans+=ai+bjans += a_i + b_jans+=ai+bj,否则的话我们将会选择ckc_kck,花费将变成ans+=ckans += c_kans+=ck。
当我们第一个点枚举完了后,大致存在三种情况aaa不可选,bbb不可选,ccc不可选。
所以接下来的枚举我们必须分类讨论了当a∣∣ba || ba∣∣b,不可选的时候,我们要达到条件只能通过选择ccc来进行。否则的话我们就只能选择a,ba, ba,b两个组合选取了。
Code
#include <bits/stdc++.h>
#define mp make_pair
// #define pb push_backusing namespace std;typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-7;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (48 ^ c);c = getchar();}return f * x;
}const int N = 2e5 + 10;struct Node {int value, fa, fb;void input() {value = read(), fa = read(), fb = read();}void out() {printf("%d %d %d\n", value, fa, fb);}bool operator < (const Node & t) const {return value < t.value;}
}a[N], b[N], c[N], in;
//结构体就是数组的用处,不用管。是我自己一开始思路想的有点复杂,然后就写了这么一个结构体。int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);int n = read(), k = read(), na = 0, nb = 0, nc = 0;for(int i = 1; i <= n; i++) {in.input();if(in.fa && in.fb) c[++nc] = in;else if(in.fa) a[++na] = in;else if(in.fb) b[++nb] = in;//一定要注意特判 0 0的情况。}// cout << na << " " << nb << " " << nc << endl;sort(a + 1, a + 1 + na);sort(b + 1, b + 1 + nb);sort(c + 1, c + 1 + nc);int pa = 1, pb = 1, pc = 1, flag = 0;int numa = 0, numb = 0;ll ans = 0;while(pa <= na && pb <= nb && pc <= nc) {if(a[pa].value + b[pb].value <= c[pc].value) {ans += a[pa].value + b[pb].value;pa++, pb++;}else {ans += c[pc].value;pc++;}numa++, numb++;if(numa >= k && numb >= k) {flag = 1;break;}}// cout << ans << " " << numa << " " << numb << endl;if(flag) {printf("%lld\n", ans);return 0;}if(pa > na || pb > nb) {while(pc <= nc) {ans += c[pc].value;pc++;numa++, numb++;if(numa >= k && numb >= k) {flag = 1;break;}}}else {while(pa <= na && pb <= nb) {ans += a[pa].value + b[pb].value;pa++, pb++;numa++, numb++;if(numa >= k && numb >= k) {flag = 1;break;}}}if(flag) {printf("%lld\n", ans);return 0;}puts("-1");return 0;
}