题目链接
思想
显然我们后面的决策是跟前一步相关的,因此我们可以考虑DP,可以用一个15维的数组来进行转移,但是这样显然回mle,所以我们考虑如何压缩状态,由于1<=Ci<=51 <= C_i <= 51<=Ci<=5,所以我们可以有dp数组:
dp[a1][a2][a3][a4][a5][last]dp[a_1][a_2][a_3][a_4][a_5][last]dp[a1][a2][a3][a4][a5][last],a1a_1a1表示可以涂1块木块的有多少种颜色,以此类推,lastlastlast表示上一次用的是可以涂lastlastlast个木块的颜色。
接下来就是考虑dp方程的转移了。
举个例子:
假设上一次用的颜色是可以涂5个块的,那么下一步的状态转移就会变成:
sum=a1∗dp[a1−1][a2][a3][a4][a5][1]+a2∗dp[a1+1][a2−1][a3][a4][a5][2]+a3∗dp[a1][a2+1][a3−1][a4][a5][3]+(a4−1)∗dp[a1][a2][a3+1][a4−1][a5][4]+a5∗dp[a1][a2][a3][a4+1][a5−1][5]sum = a_1 * dp[a_1 - 1][a2][a3][a_4][a_5][1] + a_2 * dp[a_1 + 1][a_2 - 1][a_3][a_4][a_5][2] + a_3 * dp[a_1][a_2 + 1][a_3 - 1][a_4][a_5][3] + (a4 - 1) * dp[a_1][a_2][a_3 + 1][a_4 - 1][a_5][4] + a5 * dp[a_1][a_2][a_3][a_4 + 1][a_5 - 1][5]sum=a1∗dp[a1−1][a2][a3][a4][a5][1]+a2∗dp[a1+1][a2−1][a3][a4][a5][2]+a3∗dp[a1][a2+1][a3−1][a4][a5][3]+(a4−1)∗dp[a1][a2][a3+1][a4−1][a5][4]+a5∗dp[a1][a2][a3][a4+1][a5−1][5]
之所以a4−1a_4 - 1a4−1是因为,上一步选的是5,所以转移过来的时候a4+1a_4 + 1a4+1,这里面有一个是跟上一个块同颜色的,所以需要减去,其他情况同理。
考虑到数据比较小,并且这个dp方程有点难转移,因此我们可以考虑用记忆化搜索来进行dp转移。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}void print(ll x) {if(x < 10) {putchar(x + 48);return ;}print(x / 10);putchar(x % 10 + 48);
}const int mod = 1e9 + 7;ll dp[20][20][20][20][20][10];
int n, a[10];ll dfs(int a1, int a2, int a3, int a4, int a5, int last) {if(dp[a1][a2][a3][a4][a5][last]) return dp[a1][a2][a3][a4][a5][last];ll ans = 0;if(a1) ans = (ans + 1ll * (a1 - (last == 2)) * dfs(a1 - 1, a2, a3, a4, a5, 1)) % mod;if(a2) ans = (ans + 1ll * (a2 - (last == 3)) * dfs(a1 + 1, a2 - 1, a3, a4, a5, 2)) % mod;if(a3) ans = (ans + 1ll * (a3 - (last == 4)) * dfs(a1, a2 + 1, a3 - 1, a4, a5, 3)) % mod;if(a4) ans = (ans + 1ll * (a4 - (last == 5)) * dfs(a1, a2, a3 + 1, a4 - 1, a5, 4)) % mod;if(a5) ans = (ans + 1ll * a5 * dfs(a1, a2, a3, a4 + 1, a5 - 1, 5)) % mod;return dp[a1][a2][a3][a4][a5][last] = ans;
}int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);n = read();for(int i = 1; i <= n; i++) {int x = read();a[x]++;}for(int i = 1; i <= 5; i++) dp[0][0][0][0][0][i] = 1;print(dfs(a[1], a[2], a[3], a[4], a[5], 0));return 0;
}