2019-03-18-算法-进化(有效的字母异位词)

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的一个字母异位词。

示例 1:

输入: s = "anagram", t = "nagaram"
输出: true

示例 2:

输入: s = "rat", t = "car"
输出: false

说明:
你可以假设字符串只包含小写字母。

进阶:
如果输入字符串包含 unicode 字符怎么办?你能否调整你的解法来应对这种情况?

思路1:

/*** 先转成整数数组,然后排序,然后挨个字符对比* 时间复杂度O(nlog(n))* 空间复杂度O(n)* @param s* @param t* @return*/public boolean isAnagram(String s, String t) {if(s.length() != t.length()) {return false;}int[] a = new int[s.length()];int[] b = new int[t.length()];for(int i=0;i<s.length();i++) {a[i] = s.charAt(i);}for(int i=0;i<t.length();i++) {b[i] = t.charAt(i);}Arrays.sort(a);Arrays.sort(b);for(int i=0;i<s.length();i++) {if(a[i] != b[i]) {return false;}}return true;}

思路2:对思路1进行优化,直接对字符数组进行排序

public boolean isAnagram:(String s, String t) {if(s.length() != t.length()) {return false;}char[] a = s.toCharArray();char[] b =t.toCharArray();Arrays.sort(a);Arrays.sort(b);for(int i=0;i<s.length();i++) {if(a[i] != b[i]) {return false;}}return true;}

思路3:不排序,统计字母出现次数

public boolean isAnagram(String s, String t) {if(s.length() != t.length()) {return false;}Map<Character, Integer> mapS = new HashMap<Character, Integer>();Map<Character, Integer> mapT = new HashMap<Character, Integer>();for(char c:s.toCharArray()) {mapS.put(c, mapS.get(c) == null?1:mapS.get(c) +1);}for(char c:t.toCharArray()) {mapT.put(c, mapT.get(c) == null?1:mapT.get(c) +1);}if(mapS.size() != mapT.size()) {return false;}for(char c :mapS.keySet()) {if(!mapT.containsKey(c) || mapT.get(c).intValue() != mapS.get(c).intValue()) {return false;}}return true;}

思路4,使用字母表存储(当前最优)

/*** 思路4:思路3优化版:使用字母表存储* 时间复杂度O(nlog(n))* 空间复杂度O(n)* @param s* @param t* @return*/public boolean isAnagram(String s, String t) {if(s.length() != t.length()) {return false;}int[] si = new int[26];int[] ti = new int[26];for(char c:s.toCharArray()) {si[c-'a']++;}for(char c:t.toCharArray()) {ti[c-'a']++;}for(int i=0;i<26;i++) {if(si[i] != ti[i]) {return false;}}return true;}

5、思路5,使用类库,缩短代码

public boolean isAnagram(String s, String t) {if(s.length() != t.length()) {return false;}char []a = s.toCharArray();char[]b = t.toCharArray();Arrays.sort(a);Arrays.sort(b);return String.valueOf(a).equals(String.valueOf(b));}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/313988.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P6378 [PA2010] Riddle(2-sat/前后缀优化建图)

P6378 [PA2010] Riddle n个点m条边的无向图&#xff0c;分为k个部分&#xff0c;从每个部分选择恰好一个关键点&#xff0c;使得每条边至少有一个端点是关键点。 首先有这么多的限制&#xff0c;实际上就是一个选或者不选的问题&#xff0c;每条边的限制相当于一个不选就必须…

2019-03-18-算法-进化(删除链表的倒数第N个节点)

给定一个链表&#xff0c;删除链表的倒数第 n 个节点&#xff0c;并且返回链表的头结点。 示例&#xff1a; 给定一个链表: 1->2->3->4->5, 和 n 2.当删除了倒数第二个节点后&#xff0c;链表变为 1->2->3->5.说明&#xff1a; 给定的 n 保证是有效的。…

TestinPro应用与DevOps之路

文 | 中国农业银行软件研发中心 系统支持部 王晓昕 程伟静 胡莉莉Testin Pro&#xff08;云测平台&#xff09;是一款移动端自动化测试平台工具&#xff0c;帮助用户实现移动端测试自动化&#xff0c;是一套设备统一调配、软硬件一体化的移动端测试方案。Testin Pro具有在线录制…

多项式开根

多项式开根 给定多项式g(x)g(x)g(x)&#xff0c;求f(x)f(x)f(x)&#xff0c;满足f2(x)g(x)f ^ 2(x) g(x)f2(x)g(x)。 假设我们已经得到了g(x)g(x)g(x)&#xff0c;膜x⌈n2⌉x ^{\lceil \frac{n}{2} \rceil}x⌈2n​⌉下的根f0(x)f_0 (x)f0​(x)&#xff0c;要求膜xnx ^ nxn下…

通过Service访问应用 (2)

目录 通过NodePort Service在外部访问集群应用 通过LoadBalancer Service在外部访问集群应用 Microsoft SQL Server数据库部署 为了便于理解和学习&#xff0c;请先阅读上一篇《通过Service访问应用 &#xff08;1&#xff09;》再继续学习本篇内容。通过NodePort Service在外…

2019-03-18-算法-进化(反转链表)

题目描述 反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL进阶: 你可以迭代或递归地反转链表。你能否用两种方法解决这道题&#xff1f; /*** 思路1&#xff1a;迭代法&#xff0c;直接依次反转链表* 时间复杂度…

分治FFT

分治FFT 考虑计算这么一个式子f(i)∑j1ifi−jg(j)f(i) \sum\limits_{j 1} ^{i} f_{i - j}g(j)f(i)j1∑i​fi−j​g(j)&#xff0c;给定g(x)g(x)g(x)&#xff0c;求f(x)f(x)f(x)&#xff0c;边界条件f(0)1f(0) 1f(0)1。 假设我们已经算出[l,mid][l, mid][l,mid]&#xff0c…

微软商业智能BI知识整合篇-五大工具产品系列文章

在最近2个月时间里&#xff0c;笔者尝试将自身在企业级商业智能BI的知识及经验进行梳理&#xff0c;以文章的方式输送给广大读者们阅读。笔者同样是非科班专业人员&#xff0c;但在过往的摸索过程中&#xff0c;积累的系列知识足够应付一般性地企业级商业智能BI项目需要。相信在…

2019-03-21-算法-进化(合并两个有序链表)

题目描述 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例&#xff1a; 输入&#xff1a;1->2->4, 1->3->4 输出&#xff1a;1->1->2->3->4->4思路1&#xff1a;双指针法 /*** 合并两个有序…

多项式对数函数ln f(x)

多项式对数函数ln⁡f(x)\ln f(x)lnf(x) 如果存在解必然有[x0]f(x)1[ x ^ 0]f(x) 1[x0]f(x)1&#xff0c; 对ln⁡f(x)\ln f(x)lnf(x)求导&#xff0c;有dln⁡f(x)dx≡f′(x)f(x)(modxn)\frac{d \ln f(x)}{dx} \equiv \frac{f(x)}{f(x)} \pmod {x ^ n}dxdlnf(x)​≡f(x)f′(x)…

【A】兼容Core3.0后 Natasha 的隔离域与热编译操作。

文章转载授权级别&#xff1a;A 预计阅读时间&#xff1a;15分钟一、 2.0预览版本增加了哪些功能大部分为底层的升级优化&#xff0c;例如&#xff1a;引擎兼容 Core3.0优化编译流程&#xff0c;增加编译前语法检测及日志&#xff0c;统一采用流加载方式在 Vito 的建议…

2019-03-22-算法-进化(回文链表)

题目描述 请判断一个链表是否为回文链表。 示例 1: 输入: 1->2 输出: false示例 2: 输入: 1->2->2->1 输出: true进阶&#xff1a; 你能否用 O(n) 时间复杂度和 O(1) 空间复杂度解决此题&#xff1f; 解题 思路1&#xff1a;直接利用List的顺序存储性&#x…

多项式牛顿迭代(应用:求逆,开根,对数exp)

多项式牛顿迭代 给定多项式g(x)g(x)g(x)&#xff0c;求f(x)f(x)f(x)&#xff0c;满足g(f(x))≡0(modxn)g(f(x)) \equiv 0 \pmod {x ^ n}g(f(x))≡0(modxn)。 泰勒展开 对于现有得f(x)f(x)f(x)&#xff0c;构造一个多项式g(x)g(x)g(x)&#xff0c;使得f(n)(x)g(n)(x)f^{(n)}(…

.NET Core 使用 K8S ConfigMap的正确姿势

背景ASP.NET Core默认的配置文件定义在 appsetings.json和 appsettings.{Environment}.json文件中。这里面有一个问题就是&#xff0c;在使用容器部署时&#xff0c;每次修改配置文件都需要重新构建镜像。当然你也可能会说&#xff0c;我的配置文件很稳定不需要修改&#xff0c…

2019-03-22-算法-进化(环形链表)

题目描述 给定一个链表&#xff0c;判断链表中是否有环。 为了表示给定链表中的环&#xff0c;我们使用整数 pos 来表示链表尾连接到链表中的位置&#xff08;索引从 0 开始&#xff09;。 如果 pos 是 -1&#xff0c;则在该链表中没有环。 示例 1&#xff1a; 输入&#xf…

ASP.NET Core on K8S深入学习(9)Secret Configmap

本篇已加入《.NET Core on K8S学习实践系列文章索引》&#xff0c;可以点击查看更多容器化技术相关系列文章。01—Secret关于Secret在应用启动过程中需要一些敏感信息&#xff0c;比如数据库用户名、密码&#xff0c;如果直接明文存储在容器镜像中是不安全的&#xff0c;K8S提供…

生成函数简单入门

生成函数 可表示为F(x)∑nankn(x)F(x) \sum\limits_{n} a_n k_n(x)F(x)n∑​an​kn​(x)&#xff0c;对于不同类型的生成函数&#xff0c;有不同的核函数kn(x)k_n(x)kn​(x)。 普通生成函数&#xff1a;kn(x)xnk_n(x) x ^ nkn​(x)xn。 指数生成函数&#xff1a;kn(x)xnn!…

.NET Core 学习资料精选:进阶

2019.09月就要正式发布.NET 3.0了&#xff0c;对于前一篇博文《.NET Core 学习资料精选&#xff1a;入门》大家学的可还开心&#xff1f;这是本系列的第二篇文章&#xff1a;进阶篇&#xff0c;喜欢的园友速度学起来啊。对于还在使用传统.NET Framework 框架的园友&#xff0c;…

P4389 付公主的背包(生成函数,多项式exp)

P4389 付公主的背包 考虑生成函数有&#xff1a; ∏i1n11−xvi对其取对数得&#xff0c;∑i1nln⁡11−xviF(x)11−xv,G(x)ln⁡F(x)G(x)∫F′(x)F(x)dxG(x)∫vxv−11−xvdxG(x)∫∑n≥0vxvnv−1dxG(x)∑n≥0vxvnvvnvG(x)∑n≥0xv(n1)n1G(x)∑n≥1xvnn对于原式:∑i1n∑j1∞xvijj…

VS Code 1.38 发布!

今天&#xff08;北京时间 2019 年 9 月 5 日&#xff09;&#xff0c;微软发布了 Visual Studio Code 1.38 版本。此版本主要更新的内容包括&#xff1a;Preserve case for global search and replace - 进行全局替换字符串时保留大小写。Settings editor string array valida…