系列入口:
编程实战:类C语法的编译型脚本解释器(系列)-CSDN博客
本文介绍变量表的实现。
目录
一、变量表的组织结构
二、代码
2.1 变量块
2.2 变量表(栈)
2.3 变量层级
2.4 变量查找
一、变量表的组织结构
堆栈结构,进入一层新建一个层级,退出一层则丢弃整个层。也就是个栈结构,每层又是个数组。
查找时自顶向下逐级查找,直到最后的全局变量(包括执行脚本时传入的预设变量)。
每层是个数组,这会不会有性能问题?作为脚本,里面写几十上百个变量可能性不大,遍历足够了。
二、代码
2.1 变量块
//变量表struct T_VARIABLE_BLOCK : public vector<pair<string, Variable > >{bool AddVariable(string const& var_name, Variable const& var){for (const_iterator it = begin(); it != end(); ++it){if (it->first == var_name){return false;}}push_back(pair<string, Variable >(var_name, var));return true;}Variable* FindVariable(string const& var_name)const{return FindVariable(var_name.c_str());}Variable* FindVariable(char const* var_name)const{for (const_reverse_iterator it = rbegin(); it != rend(); ++it){if (it->first != var_name){continue;}return (Variable*)&it->second;}return NULL;}};
继承自vector,只有添加和查找两个功能。
添加时先检查是否存在,查找时顺序查找。
2.2 变量表(栈)
class T_VARIABLE_S{private:typedef vector<T_VARIABLE_BLOCK > T_DATA;T_VARIABLE_BLOCK* m_pEnvs;//指向环境变量T_VARIABLE_BLOCK* m_pGlobals;//指向全局变量long m_Globals_count;//全局变量个数T_VARIABLE_BLOCK* m_pParams;//指向参数T_DATA m_local_variables;//局部变量public:T_VARIABLE_S() :m_pEnvs(NULL), m_pGlobals(NULL), m_Globals_count(-1), m_pParams(NULL) {}long getGlobalCount()const { return m_pGlobals->size(); }void T_VARIABLE_S_init(T_VARIABLE_BLOCK* pEnv, T_VARIABLE_BLOCK* pG, long Globals_count, T_VARIABLE_BLOCK* pP){m_pEnvs = pEnv;m_pGlobals = pG;m_Globals_count = Globals_count;m_pParams = pP;m_local_variables.clear();}void T_VARIABLE_S_init(T_VARIABLE_BLOCK const* pEnv, T_VARIABLE_BLOCK const* pG, long Globals_count, T_VARIABLE_BLOCK const* pP){m_pEnvs = (T_VARIABLE_BLOCK*)pEnv;m_pGlobals = (T_VARIABLE_BLOCK*)pG;m_Globals_count = Globals_count;m_pParams = (T_VARIABLE_BLOCK*)pP;m_local_variables.clear();}void FromParentVars(T_VARIABLE_S& vars, long Globals_count, T_VARIABLE_BLOCK const* pP){T_VARIABLE_S_init(vars.m_pEnvs, vars.m_pGlobals, Globals_count, pP);}void FromParentVars(T_VARIABLE_S const& vars, long Globals_count, T_VARIABLE_BLOCK const* pP){T_VARIABLE_S_init(vars.m_pEnvs, vars.m_pGlobals, Globals_count, pP);}void PushLevel(){m_local_variables.resize(m_local_variables.size() + 1);//cout << "PushLevel " << m_datas.size() << endl;}void PopLevel(){if (m_local_variables.size() > 0)m_local_variables.resize(m_local_variables.size() - 1);//cout << "PopLevel " << m_datas.size() << endl;}bool AddVariable(string const& var_name, Variable const& var){if (NULL != FindVariable(var_name))return false;if (0 == m_local_variables.size()){//全局变量m_pGlobals->push_back(pair<string, Variable >(var_name, var));}else{//局部变量m_local_variables.rbegin()->push_back(pair<string, Variable >(var_name, var));}return true;}Variable* FindVariable(string const& var_name)const{return FindVariable(var_name.c_str());}Variable* FindVariable(char const* var_name)const{long count;//从顶层向底层查找for (T_DATA::const_reverse_iterator it = m_local_variables.rbegin(); it != m_local_variables.rend(); ++it){for (T_VARIABLE_BLOCK::const_iterator it_block = it->begin(); it_block != it->end(); ++it_block){if (it_block->first != var_name){continue;}return (Variable*)&it_block->second;}}//再找参数count = m_pParams->size();for (--count; count >= 0; --count){if ((*m_pParams)[count].first != var_name){continue;}return (Variable*) & (*m_pParams)[count].second;}//再找全局变量count = (m_Globals_count < 0 ? m_pGlobals->size() : m_Globals_count);if (m_Globals_count >= 0 && m_Globals_count > (long)m_pGlobals->size()){cout << "错误的有效全局变量个数 " << m_Globals_count << " 最大 " << m_pGlobals->size() << endl;return NULL;}for (--count; count >= 0; --count){if ((*m_pGlobals)[count].first != var_name){continue;}return (Variable*) & (*m_pGlobals)[count].second;}//最后找环境变量for (T_VARIABLE_BLOCK::const_reverse_iterator it = m_pEnvs->rbegin(); it != m_pEnvs->rend(); ++it){if (it->first != var_name){continue;}return (Variable*)&it->second;}return NULL;}string ToString(long level = 0)const{stringstream ret;ret << this << endl;long n = 0;ret << "环境变量:" << endl;for (T_VARIABLE_BLOCK::const_iterator it = m_pEnvs->begin(); it != m_pEnvs->end(); ++it){ret << n << " : " << it->first << " : " << it->second.ToString() << endl;++n;}ret << "全局变量:有效数" << this->m_Globals_count << endl;for (T_VARIABLE_BLOCK::const_iterator it = m_pGlobals->begin(); it != m_pGlobals->end(); ++it){ret << n << " : " << it->first << " : " << it->second.ToString() << endl;++n;}ret << "参数:" << endl;for (T_VARIABLE_BLOCK::const_iterator it = m_pParams->begin(); it != m_pParams->end(); ++it){ret << n << " : " << it->first << " : " << it->second.ToString() << endl;++n;}ret << "局部变量:" << endl;for (T_DATA::const_iterator it = m_local_variables.begin(); it != m_local_variables.end(); ++it){for (T_VARIABLE_BLOCK::const_iterator it_block = it->begin(); it_block != it->end(); ++it_block){//if(it_block->second->isconst)continue;ret << n << " : " << it_block->first << " : " << it_block->second.ToString() << endl;}++n;}return ret.str();}};
这个类的数据包含四部分:
- 预设变量(环境变量),是编译和执行时传入的
- 全局变量,脚本里定义的,配合m_Globals_count即可确定脚本此处可以使用的全局变量(只有此处之前定义的全局变量可以使用)
- 参数,对于通过插件提供的自定义函数,每个参数都有名字,都是一个可用的变量
- 局部变量,是个栈,每进入一层嵌套语句块增加一级
由于全局变量所在位置局部变量栈必然是空的,所以AddVariable直接用局部变量表是否为空来判断是否是全局变量。
预设变量和全局变量是统一的,所以是个指针。当然全局变量还需要m_Globals_count来指出可用的全局变量个数。(似乎m_Globals_count是多余的,因为如果引用后面定义的全局变量根本编译不下去)
2.3 变量层级
每进入一个新的层级就执行一次PushLevel,新添变量总是添加在最后一级。
按照新的C标准,for循环是个新的层级,for循环的初始化语句定义的变量仅仅能在for循环里面使用。每个大括号也都表示一个新的层级。
2.4 变量查找
参数查找顺序为局部变量-参数-全局变量-预设变量,这个顺序是符合类C语言通常的规则的。
由于变量添加的时候已经做了同样规则的查找,因此确保不会存在同名变量覆盖。
允许同名变量覆盖不是个好主意,所以我觉得没必要支持。
(这里是结束,但不是整个系列的结束)