智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.正余弦算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用正余弦算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.正余弦算法

正余弦算法原理请参考:https://blog.csdn.net/u011835903/article/details/107762654
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

正余弦算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明正余弦算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/177146.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习知识回顾随笔

文章目录 如何远程连接MySQL数据库1.创建用户来运行,此用户从任何主机连接到mysql数据库2.使用IP地址来访问MySQL数据库 如何远程访问Django项目Web应用什么是Web应用应用程序的两种模式Web应用程序的优缺点 HTTP协议(超文本传输协议)简介HTT…

FLASK博客系列4——再谈路由

最近好像拖更有点久了。抱歉抱歉~ 今天我们继续来聊聊路由(其实就是我上次偷懒剩下一点没讲完)。 通过上次的文章,我们基本了解了Flask中的路由,是不是比较简单呢?别急,今天来点猛料。 一、路由之HTTP方法绑…

C++之STL库:string类(用法列举和总结)

前言 大家在学习STL库的时候一定要学会看英文文档&#xff0c;俗话说熟能生巧&#xff0c;所以还得多练&#xff01; 在使用string类之前&#xff0c;要包含头文件#include <string>和using namespace std; 文档链接&#xff1a;string - C Reference 一、string——构造…

Springboot日志-logback

logback-spring.xml的配置项 共有一个父标签、两种属性、三个节点: 一个父标签&#xff1a;configuration 两种属性&#xff1a;contextName和property 三个节点&#xff1a;appender、root、logger 日志级别 日志级别从低到高分为TRACE < DEBUG < INFO < WARN &…

filebeat日志收集工具

elk:filebeat日志收集工具和logstash相同 filebeat是一个轻量级的日志收集工具&#xff0c;所使用的系统资源比logstash部署和启动时使用的资源要小得多 filebeat可以运行在非Java环境&#xff0c;它可以代理logstash在非Java环境上收集日志 filebeat无法实现数据的过滤&…

Programming Abstractions in C阅读笔记:p197-p201

《Programming Abstractions in C》学习第64天&#xff0c;p196-p201总结。 一、技术总结 很难&#xff0c;唯有继续往下看才能让其变容易。 二、英语总结 1.psychologically是什么意思&#xff1f; 答&#xff1a; (1))psychology > psychological > psychologica…

名词解释之EID和SR

大家在聊辅助驾驶时&#xff0c;经常会发现有名词叫SR&#xff0c;或者EID&#xff0c;理想的环境感知界面叫EID&#xff0c;而其他很多车型里大家管那个界面叫SR。我们下面具体看下这两个词具体指什么。 SR是“Situational Awareness”的缩写,意思是环境感知或场景认知。 SR系…

【JMeter】配置元件

1. 元件的分类 HTTP Request Default 作用&#xff1a; 可以配置成通用的信息&#xff0c;可复用 ​​​​​​​ JDBC Connection Configuration 作用&#xff1a;连接数据库 前提&#xff1a; 下载好对应数据类型的jar包 ​​​​​​​ HTTP Header Manager信息头管理…

微信小程序推送服务号消息(一)【Go+微信小程序+微信服务号+微信开放平台】

一、需求场景 业务需要给微信小程序用户在某些场景推送微信服务号消息&#xff0c;例如&#xff1a;订单即将超时&#xff0c;电子合同签约超时等&#xff1b; 二、开发准备 1、开通微信服务号 入口&#xff1a;微信公众平台 1.1 在服务号中获取推送消息所需的配置信息&#…

免费部署开源大模型 ChatGLM-6B

参考&#xff1a;【大模型-第一篇】在阿里云上部署ChatGLM3-CSDN博客 ChatGLM 是一个开源的、支持中英双语的对话语言模型&#xff0c;由智谱 AI 和清华大学 KEG 实验室联合发布&#xff0c;基于 General Language Model (GLM) 架构&#xff0c;具有 62 亿参数。ChatGLM3-6B 更…

基于JavaWeb+SSM+Vue校园综合服务小程序系统的设计和实现

基于JavaWebSSMVue校园综合服务小程序系统的设计和实现 源码获取入口Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 Lun文目录 摘 要 I Abstract II 第一章 绪 论 1 1.1选题背景 2 1.2研究现状 3 1.3研究内容 …

易基因: MeRIP-seq等从m6A RNA甲基化角度揭示NFATc1对破骨细胞的调控机制|研究速递

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 双膦酸盐类药物是强效骨吸收抑制剂&#xff0c;是治疗骨质疏松症、多发性骨髓瘤、骨转移等疾病的首选药物。这些药物通过抑制甲羟戊酸通路和促进破骨细胞凋亡来促进骨吸收。双膦酸盐类药…

使用jenkins和tomcat创建并部署maven项目

准备三台服务器&#xff1a; 192.168.58.139 部署tomcat 详细参照&#xff1a;http://t.csdnimg.cn/Yp2z2 192.168.58.140 部署gitlab 详细参照&#xff1a;http://t.csdnimg.cn/Sb1uz 192.168.58.153 部署Jenkins 详细参照…

P8A005-A008系统加固

系统账户数据库安全 预备知识】 数据库研究跨越于计算机应用、系统软件和理论三个领域&#xff0c;其中应用促进新系统的研制开发&#xff0c;新系统带来新的理论研究&#xff0c;而理论研究又对前两个领域起着指导作用。 【实验步骤】 网络拓扑&#xff1a;server2008-bas…

【Unity基础】8.简单场景的搭建

【Unity基础】8.简单场景的搭建 大家好&#xff0c;我是Lampard~~ 欢迎来到Unity基础系列博客&#xff0c;所学知识来自B站阿发老师~感谢 &#xff08;一&#xff09;场景资源 &#xff08;1&#xff09;Import资源包 今天我们将手动去搭一个简单的场景&#xff0c;当…

IP-Adapter:文本兼容图像提示适配器,用于文本到图像扩散模型

IP-Adapter这是一种有效且轻量级的适配器&#xff0c;用于实现预训练文本到图像扩散模型的图像提示功能。只有 22M 参数的 IP 适配器可以实现与微调图像提示模型相当甚至更好的性能。IP-Adapter 不仅可以推广到从同一基本模型微调的其他自定义模型&#xff0c;还可以推广到使用…

机器学习(1)机器学习类型和机器学习的主要概念

0.前提 深度学习&#xff08;Deep Learing&#xff09;是机器学习&#xff08;Machine Learning&#xff09;领域中的一个新的研究方向&#xff0c;在如今的时代研究深度学习的大模型是十分热门的。我不知道有多少人有关注到最近openai的事件啊&#xff0c;说个比较让我惊讶的…

03、K-means聚类实现步骤与基于K-means聚类的图像压缩(1)

03、K-means聚类实现步骤与基于K-means聚类的图像压缩&#xff08;1&#xff09; 03、K-means聚类实现步骤与基于K-means聚类的图像压缩&#xff08;1&#xff09; 03、K-means聚类实现步骤与基于K-means聚类的图像压缩&#xff08;2&#xff09; 开始学习机器学习啦&#xf…

解决:ModuleNotFoundError: No module named ‘PyQt5‘

解决&#xff1a;ModuleNotFoundError: No module named ‘PyQt5’ 文章目录 解决&#xff1a;ModuleNotFoundError: No module named PyQt5背景报错问题报错翻译报错位置代码报错原因解决方法安装PyQt5在PyCharm中配置PyQt5对于新项目对于已有项目 今天的分享就到此结束了 背景…

【序列推荐】MAN:跨领域顺序推荐的混合注意网络

#论文题目&#xff1a;MAN&#xff1a;Mixed Attention Network for Cross-domain Sequential Recommendation&#xff08;跨领域顺序推荐的混合注意网络&#xff09; #论文地址&#xff1a;https://dl.acm.org/doi/10.1145/3543507.3583278 #论文源码开源地址&#xff1a;http…