代码随想录算法训练营第三十天 | 单调栈系列复习

单调栈系列复习

  • 每日温度
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 日后再次复习重新写
  • 下一个更大元素 I
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 日后再次复习重新写
  • 下一个更大元素II
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 日后再次复习重新写
  • 接雨水
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 按题解风格重写
    • 日后再次复习重新写
  • 柱状图中最大的矩形
    • 未看解答自己编写的青春版
      • 本题计算矩形面积的方式:依旧按照上一题接雨水的思路,采取横向计算的方式!对于当前遍历的位置 i ,取当前位置的高度为合并矩形的高度,向左向右遍历,找到左右两边第一个比此高度底的位置,面积就等于高X宽。
      • 卡哥的双指针法竟然不超时?为什么
      • 明白了,在循环找左右临近最小时,不需要一个下标一个下标地去遍历,可以利用已经算好的值进行跳跃!!!
      • 这道题因为必须横向计算面积,没有列向计算的方法,所以我认为,没有像上一题,接雨水那样,具有显著风格的双指针方法。
      • 单调栈方法,这道题因为要求左右最小临近,所以是递减栈。
      • 这道题的边界情况不好处理我觉得,左边的情况可以通过while里加判断解决。右边的情况,目前我认为只能在for循环结束后,单独再去弹出栈来计算了。我感觉不如对heights数组,左右加0。看看卡哥的写法
    • 重点
    • 题解的代码
      • 啊哈,也是通过前后补0做的,合理。
    • 日后再次复习重新写
  • 一段用于复制的标题
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 日后再次复习重新写
  • 一段用于复制的标题
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 日后再次复习重新写
  • 一段用于复制的标题
    • 未看解答自己编写的青春版
    • 重点
    • 题解的代码
    • 日后再次复习重新写

每日温度

未看解答自己编写的青春版

class Solution:def dailyTemperatures(self, temperatures: List[int]) -> List[int]:n = len(temperatures)stack = [0]res = [0]*nfor i in range(1,n):while stack != [] and temperatures[i] > temperatures[stack[-1]] :idx = stack.pop()res[idx] = i-idxstack.append(i)return res

重点

每日温度

1、对比用while

2、单调栈里存下标即可

3、求右边第一个更大,所以是单调递增栈,指的是:从栈顶到栈底,顺序是单增,栈顶是弹出和加入元素的位置。

题解的代码

日后再次复习重新写

下一个更大元素 I

未看解答自己编写的青春版

class Solution:def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[int]:n = len(nums2)res = [-1]*n# stack还是得存下标,存数,不方便索引到res结果数组stack = [0]for i in range(1,n):while stack != [] and nums2[i] > nums2[stack[-1]] :idx = stack.pop()res[idx] = nums2[i]stack.append(i)m = len(nums1)result = [-1]*mfor i in range(m):temp = nums2.index(nums1[i])result[i] = res[temp]return result

重点

同上一题。找索引用 list.index()

下一个更大元素 I

题解的代码

日后再次复习重新写

下一个更大元素II

未看解答自己编写的青春版

class Solution:def nextGreaterElements(self, nums: List[int]) -> List[int]:n = len(nums)res = [-1]*nstack = [0]for i in range(1,2*n):temp = i % nwhile stack != [] and nums[temp] > nums[stack[-1]] :j = stack.pop()# 注意看,我们对每个进入stack,单调栈的元素,都做了对n的取模处理# 所以这里pop出来的 j ,一定是好的,不需要经过处理就可以对结果数组赋值res[j] = nums[temp]stack.append(temp)return res

重点

本题需要处理的就是,循环数组,的情况。

朴实的想法是:把目标数组复制一倍,将目标数组扩容为两倍,然后对这个两倍的数组做最原始的单调栈。

可以进一步优化:在索引循环时,循环到 2*n , 但是对于每个 i ,对 i 进行对数组长度 n 的取模操作。

题解的代码

日后再次复习重新写

接雨水

未看解答自己编写的青春版

class Solution:def trap(self, height: List[int]) -> int:total = 0n = len(height)# 栈里放的是索引stack = [0]for i in range(1,n):  temp = 0while stack != [] and height[i] > 0 and height[i] >= height[stack[-1]] :j = stack.pop()total += (height[j]-temp)*(i-j-1)temp = height[j]# 这个判断是为了处理,中间有矮柱,或者空的情况,但是是我根据错误示例发现的,没什么道理啊# 简单举例为:[4,2,1,3] [4,0,0,3] 不加下面的判断,就会漏掉4和3之间的部分if stack != [] and height[i] < height[stack[-1]] :total += (height[i]-temp)*(i-stack[-1]-1)if height[i] > 0 :stack.append(i)return total

重点

这题要看题解,自己写的代码中,加入的一段逻辑,是为了AC而加的,如果不是题目有错误示例,我想不到。

接雨水

还是觉得,卡哥的题解给的方法是自然的,按我的方法,第一次确实想不到这种要单独处理的情况。而且不让0入栈,是比较牵强的。

在这里插入图片描述
本题还有一个要注意的是:如果两个数值相等,怎么处理?照常入栈,顶替掉前一个!

题解的代码

class Solution:def trap(self, height: List[int]) -> int:# 单调栈'''单调栈是按照 行 的方向来计算雨水从栈顶到栈底的顺序:从小到大通过三个元素来接水:栈顶,栈顶的下一个元素,以及即将入栈的元素雨水高度是 min(凹槽左边高度, 凹槽右边高度) - 凹槽底部高度雨水的宽度是 凹槽右边的下标 - 凹槽左边的下标 - 1(因为只求中间宽度)'''# stack储存index,用于计算对应的柱子高度stack = [0]result = 0for i in range(1, len(height)):# 情况一if height[i] < height[stack[-1]]:stack.append(i)# 情况二# 当当前柱子高度和栈顶一致时,左边的一个是不可能存放雨水的,所以保留右侧新柱子# 需要使用最右边的柱子来计算宽度elif height[i] == height[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较低的柱子while stack and height[i] > height[stack[-1]]:# 栈顶就是中间的柱子:储水槽,就是凹槽的地步mid_height = height[stack[-1]]stack.pop()if stack:right_height = height[i]left_height = height[stack[-1]]# 两侧的较矮一方的高度 - 凹槽底部高度h = min(right_height, left_height) - mid_height# 凹槽右侧下标 - 凹槽左侧下标 - 1: 只求中间宽度w = i - stack[-1] - 1# 体积:高乘宽result += h * wstack.append(i)return result# 单调栈压缩版
class Solution:def trap(self, height: List[int]) -> int:stack = [0]result = 0for i in range(1, len(height)):while stack and height[i] > height[stack[-1]]:mid_height = stack.pop()if stack:# 雨水高度是 min(凹槽左侧高度, 凹槽右侧高度) - 凹槽底部高度h = min(height[stack[-1]], height[i]) - height[mid_height]# 雨水宽度是 凹槽右侧的下标 - 凹槽左侧的下标 - 1w = i - stack[-1] - 1# 累计总雨水体积result += h * wstack.append(i)return result

按题解风格重写

class Solution:def trap(self, height: List[int]) -> int:total = 0n = len(height)# 栈里放的是索引stack = [0]for i in range(1,n):  while stack != [] and height[i] >= height[stack[-1]] :mid = stack.pop()if stack != []:left = stack[-1]total += (min(height[left],height[i])-height[mid])*(i-left-1)stack.append(i)return total

日后再次复习重新写

柱状图中最大的矩形

未看解答自己编写的青春版

没有思路,主要难点在于,不知道怎样计算最大矩形面积合适。包括上一道题一样,一开始也是不晓得怎样计算雨水面积合适(比如上一道题,按照单调栈计算,是按照行来计算的)。

本题计算矩形面积的方式:依旧按照上一题接雨水的思路,采取横向计算的方式!对于当前遍历的位置 i ,取当前位置的高度为合并矩形的高度,向左向右遍历,找到左右两边第一个比此高度底的位置,面积就等于高X宽。

单调栈没思路的时候,先用暴力解法试试。

暴力法:超时

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:maxarea = 0n = len(heights)for i in range(n):h = heights[i]left = i-1right = i+1while left > -1 :if heights[left] < heights[i] :breakleft -= 1while right < n :if heights[right] < heights[i] :breakright += 1temp = h * (right-left-1)maxarea = max(maxarea,temp)return maxarea 

DP法(二维数组提前存储每个位置的第一个左边小于当前高度的下标,第一个右边小于当前高度的下标)。超时。(在本题中,DP法和双指针法相同了,DP也无法用递推公式,都是用两个一维数组去提前存储,而且都需要循环去搜索。)

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:maxarea = 0n = len(heights)dp = [[0]*2 for _ in range(n)]dp[0][0] = -1dp[n-1][1] = n# 注意本题与前一题接雨水的不同,前一题因为在用暴力法(DP,双指针)都是采用列向计算# 所以在计算左右临近最大时,可以使用迭代# 本题因为是求左右临近最小,用提前记忆的方法,依然需要循环!for i in range(1,n):j = iwhile j > 0 and heights[i] <= heights[j-1]:j = j-1dp[i][0] = j-1for i in range(n-2,-1,-1):j = iwhile j < n-1 and heights[i] <= heights[j+1]:j = j+1dp[i][1] = j+1for i in range(n):h = heights[i]left = dp[i][0]right = dp[i][1] temp = h * (right-left-1)maxarea = max(maxarea,temp)return maxarea 

卡哥的双指针法竟然不超时?为什么

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:size = len(heights)# 两个DP数列储存的均是下标indexmin_left_index = [0] * sizemin_right_index = [0] * sizeresult = 0# 记录每个柱子的左侧第一个矮一级的柱子的下标min_left_index[0] = -1  # 初始化防止while死循环for i in range(1, size):# 以当前柱子为主心骨,向左迭代寻找次级柱子temp = i - 1while temp >= 0 and heights[temp] >= heights[i]:# 当左侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_left_index[temp]# 当找到左侧矮一级的目标柱子时min_left_index[i] = temp# 记录每个柱子的右侧第一个矮一级的柱子的下标min_right_index[size-1] = size  # 初始化防止while死循环for i in range(size-2, -1, -1):# 以当前柱子为主心骨,向右迭代寻找次级柱子temp = i + 1while temp < size and heights[temp] >= heights[i]:# 当右侧的柱子持续较高时,尝试这个高柱子自己的次级柱子(DPtemp = min_right_index[temp]# 当找到右侧矮一级的目标柱子时min_right_index[i] = tempfor i in range(size):area = heights[i] * (min_right_index[i] - min_left_index[i] - 1)result = max(area, result)return result

明白了,在循环找左右临近最小时,不需要一个下标一个下标地去遍历,可以利用已经算好的值进行跳跃!!!

在上面原代码的基础上进行的修改,但是由于上面那一版没想到这些,用的下标是和 j-1 / j+1 比较的,简直是下标灾难!

这个代码能过,但是时间和空间上只打败了 5% 。

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:maxarea = 0n = len(heights)dp = [[0]*2 for _ in range(n)]dp[0][0] = -1dp[n-1][1] = n# 注意本题与前一题接雨水的不同,前一题因为在用暴力法(DP,双指针)都是采用列向计算# 所以在计算左右临近最大时,可以使用迭代# 本题因为是求左右临近最小,用提前记忆的方法,依然需要循环!for i in range(1,n):j = i# 下标灾难while j > 0 and heights[i] <= heights[j-1]:# index要减一,dp出来的值要加一,因为上面的判断,是和减一的位置判断的j = dp[j-1][0]+1dp[i][0] = j-1for i in range(n-2,-1,-1):j = iwhile j < n-1 and heights[i] <= heights[j+1]:# index要加一,dp出来的值要减一,因为上面的判断,是和加一的位置判断的j = dp[j+1][1]-1dp[i][1] = j+1for i in range(n):h = heights[i]left = dp[i][0]right = dp[i][1] temp = h * (right-left-1)maxarea = max(maxarea,temp)return maxarea 

不用该死的 j-1 / j+1 了,重新更改下标!

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:maxarea = 0n = len(heights)dp = [[0]*2 for _ in range(n)]dp[0][0] = -1dp[n-1][1] = n# 注意本题与前一题接雨水的不同,前一题因为在用暴力法(DP,双指针)都是采用列向计算# 所以在计算左右临近最大时,可以使用迭代# 本题因为是求左右临近最小,用提前记忆的方法,依然需要循环!for i in range(1,n):j = i-1while j > -1 and heights[i] <= heights[j]:     j = dp[j][0]dp[i][0] = jfor i in range(n-2,-1,-1):j = i+1while j < n and heights[i] <= heights[j]:   j = dp[j][1]dp[i][1] = jfor i in range(n):h = heights[i]left = dp[i][0]right = dp[i][1] temp = h * (right-left-1)maxarea = max(maxarea,temp)return maxarea 

更改后,下标看起来顺眼多了,但是还是都只打败了5%,why ?

将二维dp数组,拆为了两个一维数组。

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:maxarea = 0n = len(heights)# 初始化一起做了dp1 = [-1]*ndp2 = [n]*n# 注意本题与前一题接雨水的不同,前一题因为在用暴力法(DP,双指针)都是采用列向计算# 所以在计算左右临近最大时,可以使用迭代# 本题因为是求左右临近最小,用提前记忆的方法,依然需要循环!for i in range(1,n):j = i-1while j > -1 and heights[i] <= heights[j]:     j = dp1[j]dp1[i] = jfor i in range(n-2,-1,-1):j = i+1while j < n and heights[i] <= heights[j]:   j = dp2[j]dp2[i] = jfor i in range(n):h = heights[i]left = dp1[i]right = dp2[i]temp = h * (right-left-1)maxarea = max(maxarea,temp)return maxarea 

啪的一下,很快啊,就打败40%了!

这道题因为必须横向计算面积,没有列向计算的方法,所以我认为,没有像上一题,接雨水那样,具有显著风格的双指针方法。

单调栈方法,这道题因为要求左右最小临近,所以是递减栈。

这道题的边界情况不好处理我觉得,左边的情况可以通过while里加判断解决。右边的情况,目前我认为只能在for循环结束后,单独再去弹出栈来计算了。我感觉不如对heights数组,左右加0。看看卡哥的写法

class Solution:def largestRectangleArea(self, heights: List[int]) -> int:maxarea = 0# 这道题的边界情况不好处理我觉得,左边的情况可以通过while里加判断解决# 右边的情况,目前我认为只能在for循环结束后,单独再去弹出栈来计算了# 我感觉不如对heights数组,左右加0heights = [0]+heights+[0]n = len(heights)stack = [0]for i in range(1,n):while stack != [] and heights[i] < heights[stack[-1]]:temp = stack.pop()if stack != [] :left = stack[-1]j = heights[temp]*(i-left-1)maxarea = max(maxarea,j)stack.append(i)return maxarea

重点

接雨水 (opens new window)是找每个柱子左右两边第一个大于该柱子高度的柱子,而本题是找每个柱子左右两边第一个小于该柱子的柱子。

这里就涉及到了单调栈很重要的性质,就是单调栈里的顺序,是从小到大还是从大到小。

在接雨水 (opens new window)中,单调栈从栈头(元素从栈头弹出)到栈底的顺序应该是从小到大的顺序。

因为本题是要找每个柱子左右两边第一个小于该柱子的柱子,所以从栈头(元素从栈头弹出)到栈底的顺序应该是从大到小的顺序。

题解的代码

啊哈,也是通过前后补0做的,合理。

# 单调栈
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:# Monotonic Stack'''找每个柱子左右侧的第一个高度值小于该柱子的柱子单调栈:栈顶到栈底:从大到小(每插入一个新的小数值时,都要弹出先前的大数值)栈顶,栈顶的下一个元素,即将入栈的元素:这三个元素组成了最大面积的高度和宽度情况一:当前遍历的元素heights[i]大于栈顶元素的情况情况二:当前遍历的元素heights[i]等于栈顶元素的情况情况三:当前遍历的元素heights[i]小于栈顶元素的情况'''# 输入数组首尾各补上一个0(与42.接雨水不同的是,本题原首尾的两个柱子可以作为核心柱进行最大面积尝试heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):# 情况一if heights[i] > heights[stack[-1]]:stack.append(i)# 情况二elif heights[i] == heights[stack[-1]]:stack.pop()stack.append(i)# 情况三else:# 抛出所有较高的柱子while stack and heights[i] < heights[stack[-1]]:# 栈顶就是中间的柱子,主心骨mid_index = stack[-1]stack.pop()if stack:left_index = stack[-1]right_index = iwidth = right_index - left_index - 1height = heights[mid_index]result = max(result, width * height)stack.append(i)return result# 单调栈精简
class Solution:def largestRectangleArea(self, heights: List[int]) -> int:heights.insert(0, 0)heights.append(0)stack = [0]result = 0for i in range(1, len(heights)):while stack and heights[i] < heights[stack[-1]]:mid_height = heights[stack[-1]]stack.pop()if stack:# area = width * heightarea = (i - stack[-1] - 1) * mid_heightresult = max(area, result)stack.append(i)return result

日后再次复习重新写

一段用于复制的标题

未看解答自己编写的青春版

重点

题解的代码

日后再次复习重新写

一段用于复制的标题

未看解答自己编写的青春版

重点

题解的代码

日后再次复习重新写

一段用于复制的标题

未看解答自己编写的青春版

重点

题解的代码

日后再次复习重新写

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16392.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕设 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;这两年不断有学弟学妹告诉学长…

《数据同步-NIFI系列》Nifi配置DBCPConnectionPool连接SQL Server数据库

Nifi配置DBCPConnectionPool连接SQL Server数据库 一、新增DBCPConnectionPool 在配置中新增DBCPConnectionPool&#xff0c;然后配置数据库相关信息 二、配置DBCPConnectionPool 2.1 DBCPConnectionPool介绍 主要介绍以下五个必填参数 Database Connection URL&#xff1…

iOS开发-实现自定义Tabbar及tabbar按钮动画效果

iOS开发-实现自定义Tabbar及tabbar按钮动画效果 之前整理了一个继承UITabbarController的Tabbar效果 查看 https://blog.csdn.net/gloryFlow/article/details/132012628 这里是继承与UIViewController的INSysTabbarViewController实现及点击tabbar按钮动画效果。 一、INSysT…

qt源码--事件系统之QAbstractEventDispatcher

1、QAbstractEventDispatcher内容较少&#xff0c;其主要是定义了一些注册接口&#xff0c;如定时器事件、socket事件、注册本地事件、自定义事件等等。其源码如下&#xff1a; 其主要定义了大量的纯虚函数&#xff0c;具体的实现会根据不同的系统平台&#xff0c;实现对应的方…

软件测试员的非技术必备技能

成为软件测试人员所需的技能 非技术技能 以下技能对于成为优秀的软件测试人员至关重要。 将您的技能组合与以下清单进行比较&#xff0c;以确定软件测试是否适合您 - 分析技能&#xff1a;优秀的软件测试人员应具备敏锐的分析能力。 分析技能将有助于将复杂的软件系统分解为…

LeetCode每日一题Day1——买卖股票的最佳时机

✨博主&#xff1a;命运之光 &#x1f984;专栏&#xff1a;算法修炼之练气篇&#xff08;C\C版&#xff09; &#x1f353;专栏&#xff1a;算法修炼之筑基篇&#xff08;C\C版&#xff09; &#x1f433;专栏&#xff1a;算法修炼之练气篇&#xff08;Python版&#xff09; ✨…

Ribbon源码

学了feign源码之后感觉&#xff0c;这部分还是按运行流程分块学合适。核心组件什么的&#xff0c;当专业术语学妥了。序章&#xff1a;认识真正のRibbon 但只用认识一点点 之前我们学习Ribbon的简单使用时&#xff0c;都是集成了Eureka-client或者Feign等组件&#xff0c;甚至在…

开发一个RISC-V上的操作系统(五)—— 协作式多任务

目录 往期文章传送门 一、什么是多任务 二、代码实现 三、测试 往期文章传送门 开发一个RISC-V上的操作系统&#xff08;一&#xff09;—— 环境搭建_riscv开发环境_Patarw_Li的博客-CSDN博客 开发一个RISC-V上的操作系统&#xff08;二&#xff09;—— 系统引导程序&a…

Mac下certificate verify failed: unable to get local issuer certificate

出现这个问题&#xff0c;可以安装证书 在finder中查找 Install Certificates.command找到后双击&#xff0c;或者使用其他终端打开 安装完即可

【机器学习】Cost Function

Cost Function 1、计算 cost2、cost 函数的直观理解3、cost 可视化总结附录 首先&#xff0c;导入所需的库&#xff1a; import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_uni import plt_intuition, plt_stationary, plt_update_onclic…

【Github】自动监测 SSL 证书过期的轻量级监控方案 - Domain Admin

在现代的企业网络中&#xff0c;网站安全和可靠性是至关重要的。一个不注意的SSL证书过期可能导致网站出现问题&#xff0c;给公司业务带来严重的影响。针对这个问题&#xff0c;手动检测每个域名和机器的证书状态需要花费大量的时间和精力。为了解决这个问题&#xff0c;我想向…

【bar堆叠图形绘制】

绘制条形图示例 在数据可视化中&#xff0c;条形图是一种常用的图表类型&#xff0c;用于比较不同类别的数据值。Python的matplotlib库为我们提供了方便易用的功能来绘制条形图。 1. 基本条形图 首先&#xff0c;我们展示如何绘制基本的条形图。假设我们有一个包含十个类别的…

VS附加到进程调试

操作&#xff1a; 要附加到进程中调试外部可执行文件&#xff0c;您需要使用Visual Studio的“调试附加”功能。以下是附加到进程中调试外部可执行文件的步骤&#xff1a; 打开您要调试的源代码文件或可执行文件。打开Visual Studio。选择“调试”菜单&#xff0c;然后选择“…

轮趣科技教育版ros小车键盘控制运动

我之前买的ros小车是单独买的底板&#xff0c;以为随便一个树莓派就可以&#xff0c;因为我以前有一个树莓派3B&#xff0c;后来买了单独的小车之后&#xff0c;发现只能使用树莓派4B&#xff0c;然后又单独买了一个树莓派4B&#xff0c;给装上镜像&#xff0c;安装ros-melodic…

kotlin 编写一个简单的天气预报app(二)增加搜索城市功能

增加界面显示openweathermap返回的信息。 在activity_main.xml里增加输入框来输入城市&#xff0c;在输入款旁边增加搜索按钮来进行查询。 然后原来显示helloworld的TextView用来显示结果。 1. 增加输入城市名字的EditText <EditTextandroid:id"id/editTextCity"…

用于永磁同步电机驱动器的自适应SDRE非线性无传感器速度控制(MatlabSimulink实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码&Simulink仿真实现 &#x1f4a5;1 概述 本文方法基于状态依赖的里卡蒂方程&#xff08;SDRE&#xff09;控制技术及其梯度型神经网络的实时计算方法&#xff0c;允许…

理解构建LLM驱动的聊天机器人时的向量数据库检索的局限性 - (第1/3部分)

本博客是一系列文章中的第一篇&#xff0c;解释了为什么使用大型语言模型&#xff08;LLM&#xff09;部署专用领域聊天机器人的主流管道成本太高且效率低下。在第一篇文章中&#xff0c;我们将讨论为什么矢量数据库尽管最近流行起来&#xff0c;但在实际生产管道中部署时从根本…

使用Spring Boot AOP实现日志记录

目录 介绍 1.1 什么是AOP 1.2 AOP体系与概念 AOP简单实现 2.1 新建一个SpringBoot项目&#xff0c;无需选择依赖 2.2 设置好本地Maven配置后&#xff0c;在pom.xml文件里添加添加maven依赖 2.3 创建一个业务类接口 2.4 在实体类实现接口业务 2.5 在单元测试运行结果 …

IDEA Writing classes... 比较慢

IDEA配置修改如下&#xff1a; 1、File -> Settings… 2、Build&#xff0c;Execution&#xff0c;Deployment -> Compiler Build process heap size 配置为 20483、Build&#xff0c;Execution&#xff0c;Deployment -> Compiler -> ActionScript & Flex C…

vue基础-diff算法

vue基础-diff算法 1、根元素改变2、根元素不变 1、根元素改变 同级比较-根元素的变化-整个dom树删除重建 2、根元素不变 同级比较&#xff0c;根元素不变-属性改变更新属性