【机器学习】Cost Function

Cost Function

    • 1、计算 cost
    • 2、cost 函数的直观理解
    • 3、cost 可视化
    • 总结
    • 附录

首先,导入所需的库:

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_uni import plt_intuition, plt_stationary, plt_update_onclick, soup_bowl
plt.style.use('./deeplearning.mplstyle')

1、计算 cost

在这里,术语 ‘cost’ 是衡量模型预测房屋目标价格的程度的指标。

具有一个变量的 cost 计算公式为
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (1) J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 \tag{1} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2(1)

其中,
f w , b ( x ( i ) ) = w x ( i ) + b (2) f_{w,b}(x^{(i)}) = wx^{(i)} + b \tag{2} fw,b(x(i))=wx(i)+b(2)

  • f w , b ( x ( i ) ) f_{w,b}(x^{(i)}) fw,b(x(i)) 是使用参数 w , b w,b w,b 对样例 i i i 的预测。
  • ( f w , b ( x ( i ) ) − y ( i ) ) 2 (f_{w,b}(x^{(i)}) -y^{(i)})^2 (fw,b(x(i))y(i))2 是目标值和预测值之间的平方差。
  • m m m 个样例的平方差进行相加,并除以 2m 得到 cost, 即 J ( w , b ) J(w,b) J(w,b).

下面的代码通过循环每个样例来计算 cost。

def compute_cost(x, y, w, b): """Computes the cost function for linear regression.Args:x (ndarray (m,)): Data, m examples y (ndarray (m,)): target valuesw,b (scalar)    : model parameters  Returnstotal_cost (float): The cost of using w,b as the parameters for linear regressionto fit the data points in x and y"""# number of training examplesm = x.shape[0] cost_sum = 0 for i in range(m): f_wb = w * x[i] + b   cost = (f_wb - y[i]) ** 2  cost_sum = cost_sum + cost  total_cost = (1 / (2 * m)) * cost_sum  return total_cost

2、cost 函数的直观理解

我们的目标是找到一个模型 f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b,其中 w w w b b b 是参数,用于准确预测给定输入 x x x 的房屋价格。

上述 cost 计算公式(1)显示,如果可以选择 w w w b b b,使得预测值 f w , b ( x ) f_{w,b}(x) fw,b(x) 与目标值 y y y 相匹配,那么 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (f_{w,b}(x^{(i)}) - y^{(i)})^2 (fw,b(x(i))y(i))2 项将为零,cost 将被最小化。

在之前的博客中,我们已经确定 b = 100 b=100 b=100 是一个最优解,所以让我们将 b b b 设为 100,并专注于 w w w

plt_intuition(x_train,y_train)

在这里插入图片描述

从图中可以就看出:

  • 当 𝑤=200 时,cost 被最小化,这与之前博客的结果相匹配。
  • 因为在 cost 计算公式中,目标值与预测值之间的差异被平方,所以当 𝑤 太大或太小时,cost 会迅速增加。
  • 使用通过最小化 cost 选择的 𝑤 和 𝑏 值得到的直线与数据完美拟合。

3、cost 可视化

我们可以通过绘制3D图或使用等高线图来观察 cost 如何随着同时改变 wb 而变化。

首先,定义更大的数据集

x_train = np.array([1.0, 1.7, 2.0, 2.5, 3.0, 3.2])
y_train = np.array([250, 300, 480,  430,   630, 730,])
plt.close('all') 
fig, ax, dyn_items = plt_stationary(x_train, y_train)
updater = plt_update_onclick(fig, ax, x_train, y_train, dyn_items)

在这里插入图片描述
在这里插入图片描述

注意,因为我们的训练样例不在一条直线上,所以最小化 cost 不是0。

cost 函数对损失进行平方的事实确保了“误差曲面”呈现凸形,就像一个碗一样。它总会有一个通过在所有维度上追随梯度可以到达的最小值点。在之前的图中,由于 w w w b b b 维度的尺度不同,这很难被察觉。下图中的 w w w b b b 是对称的。

soup_bowl()

在这里插入图片描述

总结

  • cost 计算公式提供了衡量预测与训练数据匹配程度的指标。
  • 最小化 cost 可以提供参数 w w w b b b 的最优值。

附录

lab_utils_uni.py 源码:

""" 
lab_utils_uni.pyroutines used in Course 1, Week2, labs1-3 dealing with single variables (univariate)
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from matplotlib.colors import LinearSegmentedColormap
from ipywidgets import interact
from lab_utils_common import compute_cost
from lab_utils_common import dlblue, dlorange, dldarkred, dlmagenta, dlpurple, dlcolorsplt.style.use('./deeplearning.mplstyle')
n_bin = 5
dlcm = LinearSegmentedColormap.from_list('dl_map', dlcolors, N=n_bin)##########################################################
# Plotting Routines
##########################################################def plt_house_x(X, y,f_wb=None, ax=None):''' plot house with aXis '''if not ax:fig, ax = plt.subplots(1,1)ax.scatter(X, y, marker='x', c='r', label="Actual Value")ax.set_title("Housing Prices")ax.set_ylabel('Price (in 1000s of dollars)')ax.set_xlabel(f'Size (1000 sqft)')if f_wb is not None:ax.plot(X, f_wb,  c=dlblue, label="Our Prediction")ax.legend()def mk_cost_lines(x,y,w,b, ax):''' makes vertical cost lines'''cstr = "cost = (1/m)*("ctot = 0label = 'cost for point'addedbreak = Falsefor p in zip(x,y):f_wb_p = w*p[0]+bc_p = ((f_wb_p - p[1])**2)/2c_p_txt = c_pax.vlines(p[0], p[1],f_wb_p, lw=3, color=dlpurple, ls='dotted', label=label)label='' #just onecxy = [p[0], p[1] + (f_wb_p-p[1])/2]ax.annotate(f'{c_p_txt:0.0f}', xy=cxy, xycoords='data',color=dlpurple,xytext=(5, 0), textcoords='offset points')cstr += f"{c_p_txt:0.0f} +"if len(cstr) > 38 and addedbreak is False:cstr += "\n"addedbreak = Truectot += c_pctot = ctot/(len(x))cstr = cstr[:-1] + f") = {ctot:0.0f}"ax.text(0.15,0.02,cstr, transform=ax.transAxes, color=dlpurple)##########
# Cost lab
##########def plt_intuition(x_train, y_train):w_range = np.array([200-200,200+200])tmp_b = 100w_array = np.arange(*w_range, 5)cost = np.zeros_like(w_array)for i in range(len(w_array)):tmp_w = w_array[i]cost[i] = compute_cost(x_train, y_train, tmp_w, tmp_b)@interact(w=(*w_range,10),continuous_update=False)def func( w=150):f_wb = np.dot(x_train, w) + tmp_bfig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4))fig.canvas.toolbar_position = 'bottom'mk_cost_lines(x_train, y_train, w, tmp_b, ax[0])plt_house_x(x_train, y_train, f_wb=f_wb, ax=ax[0])ax[1].plot(w_array, cost)cur_cost = compute_cost(x_train, y_train, w, tmp_b)ax[1].scatter(w,cur_cost, s=100, color=dldarkred, zorder= 10, label= f"cost at w={w}")ax[1].hlines(cur_cost, ax[1].get_xlim()[0],w, lw=4, color=dlpurple, ls='dotted')ax[1].vlines(w, ax[1].get_ylim()[0],cur_cost, lw=4, color=dlpurple, ls='dotted')ax[1].set_title("Cost vs. w, (b fixed at 100)")ax[1].set_ylabel('Cost')ax[1].set_xlabel('w')ax[1].legend(loc='upper center')fig.suptitle(f"Minimize Cost: Current Cost = {cur_cost:0.0f}", fontsize=12)plt.show()# this is the 2D cost curve with interactive slider
def plt_stationary(x_train, y_train):# setup figurefig = plt.figure( figsize=(9,8))#fig = plt.figure(constrained_layout=True,  figsize=(12,10))fig.set_facecolor('#ffffff') #whitefig.canvas.toolbar_position = 'top'#gs = GridSpec(2, 2, figure=fig, wspace = 0.01)gs = GridSpec(2, 2, figure=fig)ax0 = fig.add_subplot(gs[0, 0])ax1 = fig.add_subplot(gs[0, 1])ax2 = fig.add_subplot(gs[1, :],  projection='3d')ax = np.array([ax0,ax1,ax2])#setup useful ranges and common linspacesw_range = np.array([200-300.,200+300])b_range = np.array([50-300., 50+300])b_space  = np.linspace(*b_range, 100)w_space  = np.linspace(*w_range, 100)# get cost for w,b ranges for contour and 3Dtmp_b,tmp_w = np.meshgrid(b_space,w_space)z=np.zeros_like(tmp_b)for i in range(tmp_w.shape[0]):for j in range(tmp_w.shape[1]):z[i,j] = compute_cost(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )if z[i,j] == 0: z[i,j] = 1e-6w0=200;b=-100    #initial point### plot model w cost ###f_wb = np.dot(x_train,w0) + bmk_cost_lines(x_train,y_train,w0,b,ax[0])plt_house_x(x_train, y_train, f_wb=f_wb, ax=ax[0])### plot contour ###CS = ax[1].contour(tmp_w, tmp_b, np.log(z),levels=12, linewidths=2, alpha=0.7,colors=dlcolors)ax[1].set_title('Cost(w,b)')ax[1].set_xlabel('w', fontsize=10)ax[1].set_ylabel('b', fontsize=10)ax[1].set_xlim(w_range) ; ax[1].set_ylim(b_range)cscat  = ax[1].scatter(w0,b, s=100, color=dlblue, zorder= 10, label="cost with \ncurrent w,b")chline = ax[1].hlines(b, ax[1].get_xlim()[0],w0, lw=4, color=dlpurple, ls='dotted')cvline = ax[1].vlines(w0, ax[1].get_ylim()[0],b, lw=4, color=dlpurple, ls='dotted')ax[1].text(0.5,0.95,"Click to choose w,b",  bbox=dict(facecolor='white', ec = 'black'), fontsize = 10,transform=ax[1].transAxes, verticalalignment = 'center', horizontalalignment= 'center')#Surface plot of the cost function J(w,b)ax[2].plot_surface(tmp_w, tmp_b, z,  cmap = dlcm, alpha=0.3, antialiased=True)ax[2].plot_wireframe(tmp_w, tmp_b, z, color='k', alpha=0.1)plt.xlabel("$w$")plt.ylabel("$b$")ax[2].zaxis.set_rotate_label(False)ax[2].xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))ax[2].yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))ax[2].zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))ax[2].set_zlabel("J(w, b)\n\n", rotation=90)plt.title("Cost(w,b) \n [You can rotate this figure]", size=12)ax[2].view_init(30, -120)return fig,ax, [cscat, chline, cvline]#https://matplotlib.org/stable/users/event_handling.html
class plt_update_onclick:def __init__(self, fig, ax, x_train,y_train, dyn_items):self.fig = figself.ax = axself.x_train = x_trainself.y_train = y_trainself.dyn_items = dyn_itemsself.cid = fig.canvas.mpl_connect('button_press_event', self)def __call__(self, event):if event.inaxes == self.ax[1]:ws = event.xdatabs = event.ydatacst = compute_cost(self.x_train, self.y_train, ws, bs)# clear and redraw line plotself.ax[0].clear()f_wb = np.dot(self.x_train,ws) + bsmk_cost_lines(self.x_train,self.y_train,ws,bs,self.ax[0])plt_house_x(self.x_train, self.y_train, f_wb=f_wb, ax=self.ax[0])# remove lines and re-add on countour plot and 3d plotfor artist in self.dyn_items:artist.remove()a = self.ax[1].scatter(ws,bs, s=100, color=dlblue, zorder= 10, label="cost with \ncurrent w,b")b = self.ax[1].hlines(bs, self.ax[1].get_xlim()[0],ws, lw=4, color=dlpurple, ls='dotted')c = self.ax[1].vlines(ws, self.ax[1].get_ylim()[0],bs, lw=4, color=dlpurple, ls='dotted')d = self.ax[1].annotate(f"Cost: {cst:.0f}", xy= (ws, bs), xytext = (4,4), textcoords = 'offset points',bbox=dict(facecolor='white'), size = 10)#Add point in 3D surface plote = self.ax[2].scatter3D(ws, bs,cst , marker='X', s=100)self.dyn_items = [a,b,c,d,e]self.fig.canvas.draw()def soup_bowl():""" Create figure and plot with a 3D projection"""fig = plt.figure(figsize=(8,8))#Plot configurationax = fig.add_subplot(111, projection='3d')ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))ax.zaxis.set_rotate_label(False)ax.view_init(45, -120)#Useful linearspaces to give values to the parameters w and bw = np.linspace(-20, 20, 100)b = np.linspace(-20, 20, 100)#Get the z value for a bowl-shaped cost functionz=np.zeros((len(w), len(b)))j=0for x in w:i=0for y in b:z[i,j] = x**2 + y**2i+=1j+=1#Meshgrid used for plotting 3D functionsW, B = np.meshgrid(w, b)#Create the 3D surface plot of the bowl-shaped cost functionax.plot_surface(W, B, z, cmap = "Spectral_r", alpha=0.7, antialiased=False)ax.plot_wireframe(W, B, z, color='k', alpha=0.1)ax.set_xlabel("$w$")ax.set_ylabel("$b$")ax.set_zlabel("$J(w,b)$", rotation=90)ax.set_title("$J(w,b)$\n [You can rotate this figure]", size=15)plt.show()def inbounds(a,b,xlim,ylim):xlow,xhigh = xlimylow,yhigh = ylimax, ay = abx, by = bif (ax > xlow and ax < xhigh) and (bx > xlow and bx < xhigh) \and (ay > ylow and ay < yhigh) and (by > ylow and by < yhigh):return Truereturn Falsedef plt_contour_wgrad(x, y, hist, ax, w_range=[-100, 500, 5], b_range=[-500, 500, 5],contours = [0.1,50,1000,5000,10000,25000,50000],resolution=5, w_final=200, b_final=100,step=10 ):b0,w0 = np.meshgrid(np.arange(*b_range),np.arange(*w_range))z=np.zeros_like(b0)for i in range(w0.shape[0]):for j in range(w0.shape[1]):z[i][j] = compute_cost(x, y, w0[i][j], b0[i][j] )CS = ax.contour(w0, b0, z, contours, linewidths=2,colors=[dlblue, dlorange, dldarkred, dlmagenta, dlpurple])ax.clabel(CS, inline=1, fmt='%1.0f', fontsize=10)ax.set_xlabel("w");  ax.set_ylabel("b")ax.set_title('Contour plot of cost J(w,b), vs b,w with path of gradient descent')w = w_final; b=b_finalax.hlines(b, ax.get_xlim()[0],w, lw=2, color=dlpurple, ls='dotted')ax.vlines(w, ax.get_ylim()[0],b, lw=2, color=dlpurple, ls='dotted')base = hist[0]for point in hist[0::step]:edist = np.sqrt((base[0] - point[0])**2 + (base[1] - point[1])**2)if(edist > resolution or point==hist[-1]):if inbounds(point,base, ax.get_xlim(),ax.get_ylim()):plt.annotate('', xy=point, xytext=base,xycoords='data',arrowprops={'arrowstyle': '->', 'color': 'r', 'lw': 3},va='center', ha='center')base=pointreturndef plt_divergence(p_hist, J_hist, x_train,y_train):x=np.zeros(len(p_hist))y=np.zeros(len(p_hist))v=np.zeros(len(p_hist))for i in range(len(p_hist)):x[i] = p_hist[i][0]y[i] = p_hist[i][1]v[i] = J_hist[i]fig = plt.figure(figsize=(12,5))plt.subplots_adjust( wspace=0 )gs = fig.add_gridspec(1, 5)fig.suptitle(f"Cost escalates when learning rate is too large")#===============#  First subplot#===============ax = fig.add_subplot(gs[:2], )# Print w vs cost to see minimumfix_b = 100w_array = np.arange(-70000, 70000, 1000)cost = np.zeros_like(w_array)for i in range(len(w_array)):tmp_w = w_array[i]cost[i] = compute_cost(x_train, y_train, tmp_w, fix_b)ax.plot(w_array, cost)ax.plot(x,v, c=dlmagenta)ax.set_title("Cost vs w, b set to 100")ax.set_ylabel('Cost')ax.set_xlabel('w')ax.xaxis.set_major_locator(MaxNLocator(2))#===============# Second Subplot#===============tmp_b,tmp_w = np.meshgrid(np.arange(-35000, 35000, 500),np.arange(-70000, 70000, 500))z=np.zeros_like(tmp_b)for i in range(tmp_w.shape[0]):for j in range(tmp_w.shape[1]):z[i][j] = compute_cost(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )ax = fig.add_subplot(gs[2:], projection='3d')ax.plot_surface(tmp_w, tmp_b, z,  alpha=0.3, color=dlblue)ax.xaxis.set_major_locator(MaxNLocator(2))ax.yaxis.set_major_locator(MaxNLocator(2))ax.set_xlabel('w', fontsize=16)ax.set_ylabel('b', fontsize=16)ax.set_zlabel('\ncost', fontsize=16)plt.title('Cost vs (b, w)')# Customize the view angleax.view_init(elev=20., azim=-65)ax.plot(x, y, v,c=dlmagenta)return# draw derivative line
# y = m*(x - x1) + y1
def add_line(dj_dx, x1, y1, d, ax):x = np.linspace(x1-d, x1+d,50)y = dj_dx*(x - x1) + y1ax.scatter(x1, y1, color=dlblue, s=50)ax.plot(x, y, '--', c=dldarkred,zorder=10, linewidth = 1)xoff = 30 if x1 == 200 else 10ax.annotate(r"$\frac{\partial J}{\partial w}$ =%d" % dj_dx, fontsize=14,xy=(x1, y1), xycoords='data',xytext=(xoff, 10), textcoords='offset points',arrowprops=dict(arrowstyle="->"),horizontalalignment='left', verticalalignment='top')def plt_gradients(x_train,y_train, f_compute_cost, f_compute_gradient):#===============#  First subplot#===============fig,ax = plt.subplots(1,2,figsize=(12,4))# Print w vs cost to see minimumfix_b = 100w_array = np.linspace(-100, 500, 50)w_array = np.linspace(0, 400, 50)cost = np.zeros_like(w_array)for i in range(len(w_array)):tmp_w = w_array[i]cost[i] = f_compute_cost(x_train, y_train, tmp_w, fix_b)ax[0].plot(w_array, cost,linewidth=1)ax[0].set_title("Cost vs w, with gradient; b set to 100")ax[0].set_ylabel('Cost')ax[0].set_xlabel('w')# plot lines for fixed b=100for tmp_w in [100,200,300]:fix_b = 100dj_dw,dj_db = f_compute_gradient(x_train, y_train, tmp_w, fix_b )j = f_compute_cost(x_train, y_train, tmp_w, fix_b)add_line(dj_dw, tmp_w, j, 30, ax[0])#===============# Second Subplot#===============tmp_b,tmp_w = np.meshgrid(np.linspace(-200, 200, 10), np.linspace(-100, 600, 10))U = np.zeros_like(tmp_w)V = np.zeros_like(tmp_b)for i in range(tmp_w.shape[0]):for j in range(tmp_w.shape[1]):U[i][j], V[i][j] = f_compute_gradient(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )X = tmp_wY = tmp_bn=-2color_array = np.sqrt(((V-n)/2)**2 + ((U-n)/2)**2)ax[1].set_title('Gradient shown in quiver plot')Q = ax[1].quiver(X, Y, U, V, color_array, units='width', )ax[1].quiverkey(Q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E',coordinates='figure')ax[1].set_xlabel("w"); ax[1].set_ylabel("b")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16376.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Github】自动监测 SSL 证书过期的轻量级监控方案 - Domain Admin

在现代的企业网络中&#xff0c;网站安全和可靠性是至关重要的。一个不注意的SSL证书过期可能导致网站出现问题&#xff0c;给公司业务带来严重的影响。针对这个问题&#xff0c;手动检测每个域名和机器的证书状态需要花费大量的时间和精力。为了解决这个问题&#xff0c;我想向…

【bar堆叠图形绘制】

绘制条形图示例 在数据可视化中&#xff0c;条形图是一种常用的图表类型&#xff0c;用于比较不同类别的数据值。Python的matplotlib库为我们提供了方便易用的功能来绘制条形图。 1. 基本条形图 首先&#xff0c;我们展示如何绘制基本的条形图。假设我们有一个包含十个类别的…

VS附加到进程调试

操作&#xff1a; 要附加到进程中调试外部可执行文件&#xff0c;您需要使用Visual Studio的“调试附加”功能。以下是附加到进程中调试外部可执行文件的步骤&#xff1a; 打开您要调试的源代码文件或可执行文件。打开Visual Studio。选择“调试”菜单&#xff0c;然后选择“…

轮趣科技教育版ros小车键盘控制运动

我之前买的ros小车是单独买的底板&#xff0c;以为随便一个树莓派就可以&#xff0c;因为我以前有一个树莓派3B&#xff0c;后来买了单独的小车之后&#xff0c;发现只能使用树莓派4B&#xff0c;然后又单独买了一个树莓派4B&#xff0c;给装上镜像&#xff0c;安装ros-melodic…

kotlin 编写一个简单的天气预报app(二)增加搜索城市功能

增加界面显示openweathermap返回的信息。 在activity_main.xml里增加输入框来输入城市&#xff0c;在输入款旁边增加搜索按钮来进行查询。 然后原来显示helloworld的TextView用来显示结果。 1. 增加输入城市名字的EditText <EditTextandroid:id"id/editTextCity"…

用于永磁同步电机驱动器的自适应SDRE非线性无传感器速度控制(MatlabSimulink实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码&Simulink仿真实现 &#x1f4a5;1 概述 本文方法基于状态依赖的里卡蒂方程&#xff08;SDRE&#xff09;控制技术及其梯度型神经网络的实时计算方法&#xff0c;允许…

理解构建LLM驱动的聊天机器人时的向量数据库检索的局限性 - (第1/3部分)

本博客是一系列文章中的第一篇&#xff0c;解释了为什么使用大型语言模型&#xff08;LLM&#xff09;部署专用领域聊天机器人的主流管道成本太高且效率低下。在第一篇文章中&#xff0c;我们将讨论为什么矢量数据库尽管最近流行起来&#xff0c;但在实际生产管道中部署时从根本…

使用Spring Boot AOP实现日志记录

目录 介绍 1.1 什么是AOP 1.2 AOP体系与概念 AOP简单实现 2.1 新建一个SpringBoot项目&#xff0c;无需选择依赖 2.2 设置好本地Maven配置后&#xff0c;在pom.xml文件里添加添加maven依赖 2.3 创建一个业务类接口 2.4 在实体类实现接口业务 2.5 在单元测试运行结果 …

IDEA Writing classes... 比较慢

IDEA配置修改如下&#xff1a; 1、File -> Settings… 2、Build&#xff0c;Execution&#xff0c;Deployment -> Compiler Build process heap size 配置为 20483、Build&#xff0c;Execution&#xff0c;Deployment -> Compiler -> ActionScript & Flex C…

vue基础-diff算法

vue基础-diff算法 1、根元素改变2、根元素不变 1、根元素改变 同级比较-根元素的变化-整个dom树删除重建 2、根元素不变 同级比较&#xff0c;根元素不变-属性改变更新属性

SpringBoot自动装配介绍

SpringBoot是对Spring的一种扩展&#xff0c;其中比较重要的扩展功能就是自动装配&#xff1a;通过注解对常用的配置做默认配置&#xff0c;简化xml配置内容。本文会对Spring的自动配置的原理和部分源码进行解析&#xff0c;本文主要参考了Spring的官方文档。 自动装配的组件 …

[每日习题]进制转换 参数解析——牛客习题

hello,大家好&#xff0c;这里是bang___bang_&#xff0c;本篇记录2道牛客习题&#xff0c;进制转换&#xff08;简单&#xff09;&#xff0c;参数解析&#xff08;中等&#xff09;&#xff0c;如有需要&#xff0c;希望能有所帮助&#xff01; 目录 1️⃣进制转换 2️⃣参…

python 自动化数据提取之正则表达式

>>>> 前 言 我们在做接口自动化的时候&#xff0c;处理接口依赖的相关数据时&#xff0c;通常会使用正则表达式来进行提取相关的数据&#xff0c;今天在这边和大家聊聊如何在python中使用正则表达式。 正则表达式&#xff0c;又称正规表示式、正规表示法、正规…

gitee使用参考

Git代码托管服务 2.1 常用的Git代码托管服务 gitHub&#xff08; 地址&#xff1a;https://github.com/ &#xff09;是一个面向开源及私有软件项目的托管平台&#xff0c;因为只支持Git 作为唯一的版本库格式进行托管&#xff0c;故名gitHub码云&#xff08;地址&#xff1a;…

《cuda c编程权威指南》03 - cuda小功能汇总

1. 计时 1.1 linux #include <sys/time.h>double cpuSecond() {struct timeval tp;gettimeofday(&tp, NULL);return ((double)tp.tv_sec (double)tp.tv_usec*1e-6); }// 调用 double start cpuSecond(); kernel_name << <grid, block >> > (ar…

Java反射机制的详细讲解

目录 1.反射机制是什么&#xff1f; 2.反射机制能干什么&#xff1f; 3.反射相关的类 ​编辑 4.Class类(反射机制的起源 ) 5.反射机制相关的API 1.(重要)常用获得类相关的方法 2.常用获得类中属性相关的方法(以下方法返回值为Field相关 3.(了解)获得类中注解相关的方法…

【Django+Vue】英文成绩管理平台--20230727

能够满足大部分核心需求&#xff08;标绿&#xff09;&#xff1a;报表部分应该比较难。 项目地址 前端编译 https://gitlab.com/m7840/toeic_vue_dist Vue源码 https://gitlab.com/m7840/toeic_vue Django源码 https://gitlab.com/m7840/toeic_python 项目架构 流程 …

LeetCode使用最小花费爬楼梯(动态规划)

使用最小花费爬楼梯&#xff08;动态规划&#xff09; 题目描述算法流程(方法一)编程代码优化代码算法流程&#xff08;方法二&#xff09;编程代码代码优化 链接: 使用最小花费爬楼梯 题目描述 算法流程(方法一) 编程代码 class Solution { public:int minCostClimbingStair…

支持多种通信方式和协议方便接入第三方服务器或云平台

2路RS485串口是一种常用的通信接口&#xff0c;可以支持Modbus Slave协议&#xff0c;并可接入SCADA、HMI、DSC、PLC等上位机。它还支持Modbus RTU Master协议&#xff0c;可用于扩展多达48个Modbus Slave设备&#xff0c;如Modbus RTU远程数据采集模块、电表、水表、柴油发电机…

Qt 中操作xml文件和JSON字符串

文章目录 1、概述1.1、xml介绍1.2、json介绍 2、xml文件增删改查2.1、写xml文件内容2.2、读xml文件内容2.3、删除xml文件内容2.4、修改xml文件内容 3、构建JSON字符串3.1、JSON字符串排版4、剪切板操作 1、概述 1.1、xml介绍 XML 指可扩展标记语言&#xff08;EXtensible Mark…