开发一个RISC-V上的操作系统(五)—— 协作式多任务

目录

往期文章传送门

一、什么是多任务

二、代码实现

三、测试


往期文章传送门

开发一个RISC-V上的操作系统(一)—— 环境搭建_riscv开发环境_Patarw_Li的博客-CSDN博客

开发一个RISC-V上的操作系统(二)—— 系统引导程序(Bootloader)_Patarw_Li的博客-CSDN博客

开发一个RISC-V上的操作系统(三)—— 串口驱动程序(UART)_Patarw_Li的博客-CSDN博客

开发一个RISC-V上的操作系统(四)—— 内存管理_Patarw_Li的博客-CSDN博客

本节的代码在仓库的03_MUTI_TASK目录下,仓库链接:riscv_os: 一个RISC-V上的简易操作系统

本文代码的运行调试会在前面开发的RISC-V处理器上进行,仓库链接:cpu_prj: 一个基于RISC-V指令集的CPU实现

一、什么是多任务

一个任务可以看作一个任务函数的执行流,如在一些简单的单片机系统中,只有一个任务,即main函数:

int main(void)
{/* 初始化 */while(1){/* 循环处理多项事情 */}
}

那么,什么是多任务呢?百度百科是这样解释的:

当多任务操作系统使用某种任务调度策略允许两个或更多任务并发共享一个处理器时,事实上处理器在某一时刻只会给一件任务提供服务。因为任务调度机制保证不同任务之间的切换速度十分迅速,因此给人多个任务同时运行的错觉。 

因此,多任务可以看作多个任务函数的执行流,但光有多个任务还不够,还要实现任务的并发执行

并发可以理解为分时复用,就像把一段时间切成多个小段,每个任务轮流执行一个小段的时间,在宏观上这段时间内有多个任务同时执行,在微观上某一时刻只有一个任务在执行,这就是任务的并发执行,要实现任务的并发就涉及到一个非常重要的操作——任务的切换

任务的切换的步骤为,保存当前任务的上下文,找到下一个任务,恢复下一个任务的上下文,开始执行下一个任务。那么什么是任务的上下文呢?

任务的上下文简单来说就是任务的执行时环境,对于简单的多任务操作系统(我们这里就是),任务的上下文仅仅包含一些通用寄存器,我们将当前任务的各个通用寄存器保存起来,等待再次执行时先恢复各个通用寄存器的内容,再开始执行,从而实现任务的切换。如果是复杂一点的操作系统的话上下文还包含一些进程打开的文件、内存信息等等。

多任务系统分为协作式多任务和抢占式多任务,我们这里要实现的是协作式多任务,即任务自己主动放弃处理器的模式:

二、代码实现

先来讲解一下协作式多任务系统切换流程。

如下图所示,TASK A 和 TASK B是两个任务,Context A 和 Context B为对应任务的上下文,中间的switch_to为切换函数:

开始执行任务A时,csr寄存器mscratch指向任务A的上下文:

执行到call switch_to时,代表任务A让出cpu,调用任务切换函数switch_to:

首先要保存任务A的上下文(保存到 Context A 结构体中),其中ra寄存器中保存的是当前任务A执行的位置

然后再切换上下文,mscratch寄存器指向 Context B,再取任务B的上下文(从 Context B 结构体中获取),然后将上下文恢复到对应的寄存器中,这里ra寄存器的内容为任务B上次执行的位置, 当我们恢复ra寄存器内容后,再调用ret指令后,PC就会跳转到任务B上一次执行的位置继续执行,从而实现任务的切换:

下面是切换函数switch_to的代码,是使用汇编写的,在 03_MUTI_TASK/entry.S文件中:

# Save all General-Purpose(GP) registers to context.
# struct context *base = &ctx_task;
# base->ra = ra;
# ......
# These GP registers to be saved don't include gp
# and tp, because they are not caller-saved or
# callee-saved. These two registers are often used
# for special purpose. For example, in RVOS, 'tp'
# (aka "thread pointer") is used to store hartid,
# which is a global value and would not be changed
# during context-switch.
.macro reg_save basesw ra, 0(\base)sw sp, 4(\base)sw t0, 16(\base)sw t1, 20(\base)sw t2, 24(\base)sw s0, 28(\base)sw s1, 32(\base)sw a0, 36(\base)sw a1, 40(\base)sw a2, 44(\base)sw a3, 48(\base)sw a4, 52(\base)sw a5, 56(\base)sw a6, 60(\base)sw a7, 64(\base)sw s2, 68(\base)sw s3, 72(\base)sw s4, 76(\base)sw s5, 80(\base)sw s6, 84(\base)sw s7, 88(\base)sw s8, 92(\base)sw s9, 96(\base)sw s10, 100(\base)sw s11, 104(\base)sw t3, 108(\base)sw t4, 112(\base)sw t5, 116(\base)# we don't save t6 here, due to we have used# it as base, we have to save t6 in an extra step# outside of reg_save
.endm# restore all General-Purpose(GP) registers from the context
# except gp & tp.
# struct context *base = &ctx_task;
# ra = base->ra;
# ......
.macro reg_restore baselw ra, 0(\base)lw sp, 4(\base)lw t0, 16(\base)lw t1, 20(\base)lw t2, 24(\base)lw s0, 28(\base)lw s1, 32(\base)lw a0, 36(\base)lw a1, 40(\base)lw a2, 44(\base)lw a3, 48(\base)lw a4, 52(\base)lw a5, 56(\base)lw a6, 60(\base)lw a7, 64(\base)lw s2, 68(\base)lw s3, 72(\base)lw s4, 76(\base)lw s5, 80(\base)lw s6, 84(\base)lw s7, 88(\base)lw s8, 92(\base)lw s9, 96(\base)lw s10, 100(\base)lw s11, 104(\base)lw t3, 108(\base)lw t4, 112(\base)lw t5, 116(\base)lw t6, 120(\base)
.endm# Something to note about save/restore:
# - We use mscratch to hold a pointer to context of current task
# - We use t6 as the 'base' for reg_save/reg_restore, because it is the
#   very bottom register (x31) and would not be overwritten during loading.
#   Note: CSRs(mscratch) can not be used as 'base' due to load/restore
#   instruction only accept general purpose registers..text# void switch_to(struct context *next);
# a0: pointer to the context of the next task
.globl switch_to
.align 4
switch_to:csrrw   t6, mscratch, t6        # swap t6 and mscratchbeqz    t6, 1f                  # Note: the first time switch_to() is# called, mscratch is initialized as zero# (in sched_init()), which makes t6 zero,# and that's the special case we have to# handle with t6reg_save t6                     # save context of prev task# Save the actual t6 register, which we swapped into# mscratchmv      t5, t6          # t5 points to the context of current taskcsrr    t6, mscratch    # read t6 back from mscratchsw      t6, 120(t5)     # save t6 with t5 as base1:# switch mscratch to point to the context of the next taskcsrw    mscratch, a0# Restore all GP registers# Use t6 to point to the context of the new taskmv      t6, a0reg_restore t6# Do actual context switching.ret.end

.macro 定义两个宏函数,reg_save  basereg_restore  base,reg_save  base 作用是把通用寄存器内容存储到以base为基地址的空间中,即保存上下文;而 reg_restore  base 则是把以base为基地址的通用寄存器内容取出放到各个寄存器中,即恢复上下文

下面是任务创建、调度相关的函数,在 03_MUTI_TASK/sched.c 文件中:

#include "inc/os.h"/* defined in entry.S */
extern void switch_to(context *next);#define MAX_TASKS 4
#define STACK_SIZE 128
/** In the standard RISC-V calling convention, the stack pointer sp* is always 16-byte aligned.*/
uint8_t __attribute__((aligned(16))) task_stack[MAX_TASKS][STACK_SIZE];context ctx_tasks[MAX_TASKS];/** _top is used to mark the max available position of ctx_tasks* _current is used to point to the context of current task*/
static uint8_t _top = 0;
static uint8_t _current = -1;static void w_mscratch(reg_t x)
{asm volatile("csrw mscratch, %0" : : "r" (x));
}void sched_init()
{w_mscratch(0);
}/** implment a simple cycle FIFO schedular*/
void schedule()
{if (_top <= 0) {panic("Num of task should be greater than zero!");return;}_current = (_current + 1) % _top;context *next = &(ctx_tasks[_current]);switch_to(next);
}/** DESCRIPTION*     Create a task.*     - start_routin: task routine entry* RETURN VALUE*     0: success*    -1: if error occured*/
uint8_t task_create(void (*start_routin)(void))
{if (_top < MAX_TASKS) {ctx_tasks[_top].sp = (reg_t) &task_stack[_top][STACK_SIZE];ctx_tasks[_top].ra = (reg_t) start_routin;_top++;return 0;} else {return -1;}
}/** DESCRIPTION*      task_yield()  causes the calling task to relinquish the CPU and a new*      task gets to run.*/
void task_yield()
{schedule();
}/** a very rough implementaion, just to consume the cpu*/
void task_delay(volatile int count)
{count *= 50000;while (count--);
}
  • sched_init() 函数用于初始化mscratch寄存器。
  • schedule() 函数则用于切换任务。
  • task_create(void (*start_routin)(void)) 函数用于创建任务,传入的参数为任务函数的入口地址。

下面是任务的定义,在 03_MUTI_TASK/user.c 文件中:

#include "inc/os.h"#define DELAY 1000void user_task0(void)
{uart_puts("Task 0: Created!\n");while (1) {uart_puts("Task 0: Running...\n");task_delay(DELAY);task_yield();}
}void user_task1(void)
{uart_puts("Task 1: Created!\n");while (1) {uart_puts("Task 1: Running...\n");task_delay(DELAY);task_yield();}
}/* NOTICE: DON'T LOOP INFINITELY IN main() */
void os_main(void)
{task_create(user_task0);task_create(user_task1);
}

其中,os_main函数仅仅用于创建两个任务,之后不会执行。两个任务执行的内容为,先打印信息,然后delay,最后让出cpu给另外一个任务执行,依此循环。

三、测试

为了测试多任务执行效果,03_MUTI_TASK/kernal.c 的内容如下:

#include "inc/os.h"extern void os_main(void);void start_kernel(void){uart_init();uart_puts("Hello World!\n");page_init();sched_init();os_main();schedule();uart_puts("Would not go here!\n");while(1){}; // stop here!
}

然后编译烧录程序到RISC-V处理器上执行(这一步看我前面的文章),运行效果如下:

可以看到 task 1 和 task 0 分时执行,这样我们的多任务部分就验证成功啦!

遇到问题欢迎加群 892873718 交流~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/16380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mac下certificate verify failed: unable to get local issuer certificate

出现这个问题&#xff0c;可以安装证书 在finder中查找 Install Certificates.command找到后双击&#xff0c;或者使用其他终端打开 安装完即可

【机器学习】Cost Function

Cost Function 1、计算 cost2、cost 函数的直观理解3、cost 可视化总结附录 首先&#xff0c;导入所需的库&#xff1a; import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_uni import plt_intuition, plt_stationary, plt_update_onclic…

【Github】自动监测 SSL 证书过期的轻量级监控方案 - Domain Admin

在现代的企业网络中&#xff0c;网站安全和可靠性是至关重要的。一个不注意的SSL证书过期可能导致网站出现问题&#xff0c;给公司业务带来严重的影响。针对这个问题&#xff0c;手动检测每个域名和机器的证书状态需要花费大量的时间和精力。为了解决这个问题&#xff0c;我想向…

【bar堆叠图形绘制】

绘制条形图示例 在数据可视化中&#xff0c;条形图是一种常用的图表类型&#xff0c;用于比较不同类别的数据值。Python的matplotlib库为我们提供了方便易用的功能来绘制条形图。 1. 基本条形图 首先&#xff0c;我们展示如何绘制基本的条形图。假设我们有一个包含十个类别的…

VS附加到进程调试

操作&#xff1a; 要附加到进程中调试外部可执行文件&#xff0c;您需要使用Visual Studio的“调试附加”功能。以下是附加到进程中调试外部可执行文件的步骤&#xff1a; 打开您要调试的源代码文件或可执行文件。打开Visual Studio。选择“调试”菜单&#xff0c;然后选择“…

轮趣科技教育版ros小车键盘控制运动

我之前买的ros小车是单独买的底板&#xff0c;以为随便一个树莓派就可以&#xff0c;因为我以前有一个树莓派3B&#xff0c;后来买了单独的小车之后&#xff0c;发现只能使用树莓派4B&#xff0c;然后又单独买了一个树莓派4B&#xff0c;给装上镜像&#xff0c;安装ros-melodic…

kotlin 编写一个简单的天气预报app(二)增加搜索城市功能

增加界面显示openweathermap返回的信息。 在activity_main.xml里增加输入框来输入城市&#xff0c;在输入款旁边增加搜索按钮来进行查询。 然后原来显示helloworld的TextView用来显示结果。 1. 增加输入城市名字的EditText <EditTextandroid:id"id/editTextCity"…

用于永磁同步电机驱动器的自适应SDRE非线性无传感器速度控制(MatlabSimulink实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 参考文献 &#x1f308;4 Matlab代码&Simulink仿真实现 &#x1f4a5;1 概述 本文方法基于状态依赖的里卡蒂方程&#xff08;SDRE&#xff09;控制技术及其梯度型神经网络的实时计算方法&#xff0c;允许…

理解构建LLM驱动的聊天机器人时的向量数据库检索的局限性 - (第1/3部分)

本博客是一系列文章中的第一篇&#xff0c;解释了为什么使用大型语言模型&#xff08;LLM&#xff09;部署专用领域聊天机器人的主流管道成本太高且效率低下。在第一篇文章中&#xff0c;我们将讨论为什么矢量数据库尽管最近流行起来&#xff0c;但在实际生产管道中部署时从根本…

使用Spring Boot AOP实现日志记录

目录 介绍 1.1 什么是AOP 1.2 AOP体系与概念 AOP简单实现 2.1 新建一个SpringBoot项目&#xff0c;无需选择依赖 2.2 设置好本地Maven配置后&#xff0c;在pom.xml文件里添加添加maven依赖 2.3 创建一个业务类接口 2.4 在实体类实现接口业务 2.5 在单元测试运行结果 …

IDEA Writing classes... 比较慢

IDEA配置修改如下&#xff1a; 1、File -> Settings… 2、Build&#xff0c;Execution&#xff0c;Deployment -> Compiler Build process heap size 配置为 20483、Build&#xff0c;Execution&#xff0c;Deployment -> Compiler -> ActionScript & Flex C…

vue基础-diff算法

vue基础-diff算法 1、根元素改变2、根元素不变 1、根元素改变 同级比较-根元素的变化-整个dom树删除重建 2、根元素不变 同级比较&#xff0c;根元素不变-属性改变更新属性

SpringBoot自动装配介绍

SpringBoot是对Spring的一种扩展&#xff0c;其中比较重要的扩展功能就是自动装配&#xff1a;通过注解对常用的配置做默认配置&#xff0c;简化xml配置内容。本文会对Spring的自动配置的原理和部分源码进行解析&#xff0c;本文主要参考了Spring的官方文档。 自动装配的组件 …

[每日习题]进制转换 参数解析——牛客习题

hello,大家好&#xff0c;这里是bang___bang_&#xff0c;本篇记录2道牛客习题&#xff0c;进制转换&#xff08;简单&#xff09;&#xff0c;参数解析&#xff08;中等&#xff09;&#xff0c;如有需要&#xff0c;希望能有所帮助&#xff01; 目录 1️⃣进制转换 2️⃣参…

python 自动化数据提取之正则表达式

>>>> 前 言 我们在做接口自动化的时候&#xff0c;处理接口依赖的相关数据时&#xff0c;通常会使用正则表达式来进行提取相关的数据&#xff0c;今天在这边和大家聊聊如何在python中使用正则表达式。 正则表达式&#xff0c;又称正规表示式、正规表示法、正规…

gitee使用参考

Git代码托管服务 2.1 常用的Git代码托管服务 gitHub&#xff08; 地址&#xff1a;https://github.com/ &#xff09;是一个面向开源及私有软件项目的托管平台&#xff0c;因为只支持Git 作为唯一的版本库格式进行托管&#xff0c;故名gitHub码云&#xff08;地址&#xff1a;…

《cuda c编程权威指南》03 - cuda小功能汇总

1. 计时 1.1 linux #include <sys/time.h>double cpuSecond() {struct timeval tp;gettimeofday(&tp, NULL);return ((double)tp.tv_sec (double)tp.tv_usec*1e-6); }// 调用 double start cpuSecond(); kernel_name << <grid, block >> > (ar…

Java反射机制的详细讲解

目录 1.反射机制是什么&#xff1f; 2.反射机制能干什么&#xff1f; 3.反射相关的类 ​编辑 4.Class类(反射机制的起源 ) 5.反射机制相关的API 1.(重要)常用获得类相关的方法 2.常用获得类中属性相关的方法(以下方法返回值为Field相关 3.(了解)获得类中注解相关的方法…

【Django+Vue】英文成绩管理平台--20230727

能够满足大部分核心需求&#xff08;标绿&#xff09;&#xff1a;报表部分应该比较难。 项目地址 前端编译 https://gitlab.com/m7840/toeic_vue_dist Vue源码 https://gitlab.com/m7840/toeic_vue Django源码 https://gitlab.com/m7840/toeic_python 项目架构 流程 …

LeetCode使用最小花费爬楼梯(动态规划)

使用最小花费爬楼梯&#xff08;动态规划&#xff09; 题目描述算法流程(方法一)编程代码优化代码算法流程&#xff08;方法二&#xff09;编程代码代码优化 链接: 使用最小花费爬楼梯 题目描述 算法流程(方法一) 编程代码 class Solution { public:int minCostClimbingStair…