猫12分类:使用yolov5训练检测模型

前言:

      在使用yolov5之前,尝试过到百度飞桨平台(小白不建议)、AutoDL平台(这个比较友好,经济实惠)训练模型。但还是没有本地训练模型来的舒服。因此远程了一台学校电脑来搭建自己的检测模型。配置嘛!勉强过的去。毕竟训练的模型也不是很大。本来想着也想搞一些nb轰轰的模型,但想想还是算了,一是经济(云平台,只想白嫖),二是时间(准备那些数据集就非常浪费时间,自己昨天制作的那150关于猫的label就标了三四个小时,还标错了,导致训练时全部返工,真的烦),三是学校电脑配置还是不咋行,训练完估计模型精度也就那样子。想想嘛!还是根据喜好训练一个模型吧!

使用yolov5进行本地部署的原因:

推荐使用YOLOv5训练检测模型有以下几个原因:
1. 高性能:YOLOv5在检测任务上具有出色的性能。相比于之前的版本,YOLOv5采用了更深的网络结构和更多的特征层,可以提供更准确的检测结果,并且在速度上也有所提升。
2. 简单易用:YOLOv5提供了一个简单的训练和测试框架,使得用户可以轻松地进行模型的训练和评估。用户只需要准备好训练数据,并进行简单的配置,就可以开始训练模型。
3. 多平台支持:YOLOv5支持多种平台,包括CPU、GPU和TPU等。这使得用户可以根据自己的需求选择合适的硬件平台来进行训练和推理。
4. 开源社区支持:YOLOv5是一个开源项目,有一个庞大的开源社区支持。这意味着用户可以从社区中获取到丰富的资源、教程和解决方案,以帮助他们更好地使用和优化YOLOv5模型。
综上所述,YOLOv5是一个性能优秀、简单易用、多平台支持且有开源社区支持的检测模型,因此推荐使用它进行训练和应用。

数据预处理:

xml文件转txt文件

在使用yolov5训练模型之前,需要将label目录下的xml文件转为txt文件。

转换代码如下

import os
import xml.etree.ElementTree as ETimport os
import xml.etree.ElementTree as ETdef convert_xml_to_yolov5_label(xml_file, txt_file):tree = ET.parse(xml_file)root = tree.getroot()with open(txt_file, 'w') as f:for obj in root.findall('outputs/object/item'):class_name = obj.find('name').textbbox = obj.find('bndbox')x_min = float(bbox.find('xmin').text)y_min = float(bbox.find('ymin').text)x_max = float(bbox.find('xmax').text)y_max = float(bbox.find('ymax').text)width = x_max - x_minheight = y_max - y_minx_center = x_min + width / 2y_center = y_min + height / 2# 将坐标归一化到0-1之间width /= float(root.find('size/width').text)height /= float(root.find('size/height').text)x_center /= float(root.find('size/width').text)y_center /= float(root.find('size/height').text)f.write(f"{class_name} {x_center} {y_center} {width} {height}\n")def batch_convert_xml_to_yolov5_label(xml_folder, txt_folder):if not os.path.exists(txt_folder):os.makedirs(txt_folder)for file in os.listdir(xml_folder):if file.endswith('.xml'):xml_file = os.path.join(xml_folder, file)txt_file = os.path.join(txt_folder, file.replace('.xml', '.txt'))convert_xml_to_yolov5_label(xml_file, txt_file)# 示例用法
xml_folder = r'C:\Users\1\Desktop\images\labelsxml'
txt_folder = r'C:\Users\1\Desktop\images\labels'
batch_convert_xml_to_yolov5_label(xml_folder, txt_folder)

划分训练集和验证集

因为数据集比较少,所以验证集部分直接使用训练集来做验证。

数据目录结构如下:

编写data目录yaml文件(索引文件,加载数据的访问路径以及检测类别)

# 数据集根路径
path: C:\Users\1\Desktop\catmaoxunlian\catdata    
#训练集
train: images/train
#验证集
val: images/valnc: 1
# Classes
names: ['cat']

示例编辑如下

编写models目录下的yum文件

模型训练

找到yolov5目录下的train.py,加载数据集yaml文件和models云文件,以及预训练模型,

详细教程请找我的另一篇博客(懒得再写一遍)基于yolov5的NEU-NET产品缺陷目标检测_map50_挽风起苍岚的博客-CSDN博客

基本上检测出来了,不过精度不是很高,精度不高的原因,主要时数据集太少(猫的类别很多),训练次数不是很够。

模型推理

python detect.py --weights yolov5s.pt --source 0                               # webcamimg.jpg                         # imagevid.mp4                         # videoscreen                          # screenshotpath/                           # directorylist.txt                        # list of imageslist.streams                    # list of streams'path/*.jpg'                    # glob'https://youtu.be/LNwODJXcvt4'  # YouTube'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

测试图片如下:

模型推理后的结果

额,模型精度有待加强,不过先这样吧!勉勉强强,哈哈。。。

后续内容

训练一个猫12分类的模型;

部署到云平台,开放一个接口调用模型API;

然后结合猫目标检测模型制作一个C#小程序。

增加一个GPT功能等等吧!

....

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/152783.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hdfsClient_java对hdfs进行上传、下载、删除、移动、打印文件信息尚硅谷大海哥

Java可以通过Hadoop提供的HDFS Java API来控制HDFS。通过HDFS Java API,可以实现对HDFS的文件操作,包括文件的创建、读取、写入、删除等操作。 具体来说,Java可以通过HDFS Java API来创建一个HDFS文件系统对象,然后使用该对象来进…

集合的自反关系和对称关系

集合的自反关系和对称关系 一:集合的自反关系1:原理:2:代码实现 二:对称关系1:原理:2:代码实现 三:总结 一:集合的自反关系 1:原理: …

【python】直方图正则化详解和示例

直方图正则化(Histogram Normalization)是一种图像增强技术,目的是改变图像的直方图以改善图像的质量。具体来说,它通过将图像的直方图调整为指定的形状,以增强图像的对比度和亮度。 直方图正则化的基本步骤如下&…

【Android Jetpack】Hilt的理解与浅析

文章目录 依赖注入DaggerHiltKoin添加依赖项Hilt常用注解的含义HiltAndroidAppAndroidEntryPointInjectModuleInstallInProvidesEntryPoint Hilt组件生命周期和作用域如何使用 Hilt 进行依赖注入 本文只是进行了简单入门,博客仅当做笔记用。 依赖注入 依赖注入是一…

某60区块链安全之不安全的随机数实战二学习记录

区块链安全 文章目录 区块链安全不安全的随机数实战二实验目的实验环境实验工具实验原理实验内容EXP利用 不安全的随机数实战二 实验目的 学会使用python3的web3模块 学会以太坊不安全的随机数漏洞分析及利用 实验环境 Ubuntu18.04操作机 实验工具 python3 实验原理 由…

吴恩达《机器学习》9-1:代价函数

一、引入新标记方法 首先,引入一些新的标记方法,以便更好地讨论神经网络的代价函数。考虑神经网络的训练样本,其中每个样本包含输入 x 和输出信号 y。我们用 L 表示神经网络的层数,表示每层的神经元个数(表示输出层神…

基于单片机GPS轨迹定位和里程统计系统

**单片机设计介绍, 基于单片机GPS轨迹定位和里程统计系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 一个基于单片机、GPS和里程计的轨迹定位和里程统计系统可以被设计成能够在移动的交通工具中精确定位车辆的位置…

Spring Boot - 自定义注解来记录访问路径以及访问信息,并将记录存储到MySQL

1、准备阶段 application.properties&#xff1b;yml 可通过yaml<互转>properties spring.datasource.urljdbc:mysql://localhost:3306/study_annotate spring.datasource.usernameroot spring.datasource.password123321 spring.datasource.driver-class-namecom.mysq…

【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…

苹果CMS首涂第30套可装修DIY主题模板免授权版

这是一款可以装修的主题&#xff0c;类似淘宝店装修一样&#xff0c;可以针对首页、栏目页、详情页、播放页进行自定义装修&#xff0c;内置10个模块自由选择、添加、修改、删除、排序操作&#xff0c;后续升级还会增加更多实用和个性模块供选择&#xff0c;主题内包含的导航、…

Actor对象的引用 怎么设置他的材质?或设置是否启用重力?

这个蓝图我是想当重叠触发,将另一个Target Actor(一个球体)设置他的z增加50,但是为什么在触发的时候会抽搐?而且我想要设置他的材质等等这些属性都不行

什么是希尔伯特空间?

照片由 丹克里斯蒂安佩杜雷什 on Unsplash 一、说明 在本文中&#xff0c;我们将探讨希尔伯特空间这个非常重要的主题。希尔伯特空间由于其特性而经常出现在物理和工程中。为了理解希尔伯特空间&#xff0c;我们从度量空间的定义开始。 二、基础概念 集合是定义明确的元素的集合…

Flutter 使用 device_info_plus 遇到的问题

问题&#xff1a;引用device_info_plus 插件出现了异常&#xff0c;不知道为啥打开项目的时候就不能用了。 解决&#xff1a;改了版本解决 Target of URI doesnt exist: package:device_info_plus/device_info_plus.dart. (Documentation) Try creating the file reference…

广州华锐互动VRAR | VR课件内容编辑器解决院校实践教学难题

VR课件内容编辑器由VR制作公司广州华锐互动开发&#xff0c;是一款专为虚拟现实教育领域设计的应用&#xff0c;它能够将传统的教学内容转化为沉浸式的三维体验。通过这款软件&#xff0c;教师可以轻松创建和编辑各种虚拟场景、模型和动画&#xff0c;以更生动、直观的方式展示…

kafka本地安装报错

Error: VM option ‘UseG1GC’ is experimental and must be enabled via -XX:UnlockExperimentalVMOptions. #打开 bin/kafka-run-class.sh KAFKA_JVM_PERFORMANCE_OPTS“-server -XX:UseG1GC -XX:MaxGCPauseMillis20 -XX:InitiatingHeapOccupancyPercent35 -XX:ExplicitGCInv…

基于安卓android微信小程序的好物分享系统

运行环境 开发语言&#xff1a;Java 框架&#xff1a;ssm JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09; 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&a…

ModernCSS.dev - 来自微软前端工程师的 CSS 高级教程,讲解如何用新的 CSS 语法来解决旧的问题

今天给大家安利一套现代 CSS 的教程&#xff0c;以前写网页的问题&#xff0c;现在都可以用新的写法来解决了。 ModernCSS.dev 是一个现代 CSS 语法的教程&#xff0c;讲解新的 CSS 语法如何解决一些传统问题&#xff0c;一共有30多课。 这套教程的作者是 Stephanie Eckles&am…

【开源】基于JAVA的校园二手交易系统

项目编号&#xff1a; S 009 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S009&#xff0c;文末获取源码。} 项目编号&#xff1a;S009&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 二手商品档案管理模…

汇编-loop循环指令

LOOP指令是根据ECX计数器循环&#xff0c;将语句块重复执行特定次数。 ECX自动作为计数器&#xff0c; 每重复循环一次就递减1。 语法如下所示&#xff1a; 循环目的地址必须在距离当前位置计数器的-128到127字节范围内 LOOP指令的执行有两个步骤&#xff1a; 第一步&…

【Linux】软连接和硬链接:创建、管理和解除链接的操作

文章目录 1. 软链接和硬链接简介2. Linux软链接使用方法3. Linux硬链接使用方法4. 总结 1. 软链接和硬链接简介 什么是软链接 软链接(Symbolic Link),也称为符号链接,是包含了源文件位置信息的特殊文件。它的作用是间接指向一个文件或目录。如果软链接的源文件被删除或移动了,软…