[算法学习笔记](超全)概率与期望

引子

先来讲个故事······

话说在神奇的OI大陆上,有一只paper mouse

有一天,它去商场购物,正好是11.11,商店有活动

它很荣幸被选上给1832抽奖

在抽奖箱里,有3个蓝球,12个红球

paper mouse能抽3次

蒟蒻的paper mouse就疑惑了:抽到至少1个蓝球的概率是多少???

Answer:

总共有15个球

只抽到1个蓝球的概率是\frac{C_{3}^{1}*C_{12}^{2}}{C_{15}^{3}}\approx0.435165(很好理解吧,在4个蓝球里取一个,再在11个红球里面取3个,总共是在15个里面取4个)

抽到2个蓝球的概率是\frac{C_{3}^{2}*C_{12}^{1}}{C_{15}^{3}}\approx0.079121

抽到3个蓝球的概率是\frac{C_{3}^{3}*C_{12}^{0}}{C_{15}^{3}}\approx0.002198

所以总概率就是三者之和,即0.435165+0.079121+0.002198=0.516484\approx\frac{129}{250}

我们也可以反过来分析:如果paper mouse运气爆棚,一个蓝球都没有抽到

那么其对立事件就一定会有至少一个蓝球

所以概率就是:1-\frac{C_{12}^{3}}{C_{15}^{3}}\approx1-0.483516=0.516484\approx\frac{129}{250}

也就是说,paper mouse有接近\frac{1}{2}的概率给心爱的1832送上礼物······

概率

概率就是随机事件出现的可能性大小

For example,上面的故事里就涉及到概率

若某种事件重复了N次,其中A事件出现了M次,出现A事件的概率就是\frac{M}{N}

同时,0\leq \frac{M}{N}\leq 1,用P()表示

即:P(A)=\frac{M}{N}

1.1 条件概率与全概率

条件概率公式:

如果事件A发生的概率为P(A),事件B单独发生的概率为P(b)

若B必须在A发生之后发生,则B发生的概率就是条件概率,P(B)=P(A|b)=\frac{P(AB)}{P(b)}

(是不是还比较好理解?真正shit的才刚刚开始)

全概率公式:

如果事件 B1, B2,⋯, Bn 构成一个完整的样本空间,且两两互斥,P(Bi) > 0。 则对于任意事件 A 有:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i),这就是全概率公式

思想就是:P(A)不是很好求,但是把P(A)拆开计算P(A|Bi)P(Bi)就相对好算一些

举个例子:

paper mouse去表白1832了
他每次写情书,1832都有0.5的概率看见
而第一次看见,1832有0.2的概率同意他
第二次看见时,1832有0.5的概率同意他
第三次看见时,1832一定会同意他的请求 

求paper mouse获得1832爱情的概率

通过全概率公式:

事件A是paper mouse陷入爱河

事件集合B是:B={B_0,B_1,B_2,B_3},B_i表示paper mouse表白了i次

P(A)=P(AB_0)+P(AB_1)+P(AB_2)+P(AB_3)

            = P(A|B_0)P(B_0) + P(A|B_1)P(B_1) + P(A|B_2)P(B_2)+ P(A|B_3)P(B_3)

            =0+C_{3}^{1}*0.5^{3}*0.2+C_{3}^{2}*0.5^{3}*0.5+C_{3}^{3}*0.5^{3}*1

            =0.3875

所以paper mouse表白成功的概率高达0.3!(喜)

期望

炸裂的东西来了

先看看期望的定义

1.1 期望定义

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随 机变量称为离散型随机变量。

离散型随机变量的一切可能的取值 Xi 与对应的概率 P(Xi) 乘积之和称为该离散型随机变量的数学期望,记为 E(X) ,简称期望。

怎么样?是不是蛮有意思的?

换一种通俗但不精确的方式阐述一下(涉及下定义内容,非xxs请谨慎观看):

期望就是    某件事发生的概率集合中的每一个数    对其对应值的乘积    的和

一个普通骰子,众所周知有六面,对应1~6

每一面转到的概率就是 \frac{1}{6},所以:

E(X)=\frac{1}{6}*1+\frac{1}{6}*2+\frac{1}{6}*3+\frac{1}{6}*4+\frac{1}{6}*5+\frac{1}{6}*6

            =\frac{1}{6}*(1+2+3+4+5+6)

            =3.5

所以也可以这么说:

数学期望可以理解为某件事情大量发生之后的平均结果。

来个难点的:

设一张彩票为 2 元,每售 100000 张开奖,假每张彩票有一个对应的六位数号码,奖次如下:

  • 安慰奖:奖励 4 元,中奖概率0.1
  • 幸运奖:奖励 20 元,中奖概率 0.01
  • 手气奖:奖励 200 元,中奖概率 0.001
  • 一等奖:奖励 2000 元,中奖概率 0.0001
  • 特等奖:奖励 20000 元,中奖概率 0.00001

那公司到底是亏还是赚呢?

我们来简单计算一下,对于每一位购买彩票的用户,公司可能支出为: 

0.14+0.01*20+0.001*200+0.0001*2000+0.00001*20000=1.2

所以公司期望赚0.8元

1.2 期望的线性性质

设 X, Y 是任意两个随机变量,则有

  • E(X + Y ) = E(X) + E(Y )
  • E(aX + bY ) = aE(X) + bE(Y ) 

证明略

再举个栗子:

同时仍一颗骰子的期望为3.5

同时扔两颗骰子的概率是3.5+3.5=7

1.3 条件期望与全期望公式

一个经典xxs的题:

A班平均分为x分,B班平均分为y分

求A、B两个班的平均分

显而易见的:A、B班的平均分不能直接(x+y)/2

而是:(x*a+ y*b)/(x+y),其中a表示A班人数,b表示B班人数

期望也差不多。

友好的看一下全期望公式:

设 X 是一个离散型随机变量, 当 X = xi 时,随机变量 Y 可能包含多种情况 y1, y2,⋯, yk,随机变量 Y 的条件 数学期望为:

E(Y|X=x_i)=\sum ^{k}_{j=1}y_j × P(Y = y_j |X = x_i)

对于随机变量 X 有很多取值 x1, x2,⋯, xa,Y 有很多取值 y1, y2,⋯, yb。

全期望公式:

E(Y)=E(E(Y|X))

            =\sum ^{a}_{i=1}P(X = x_i)E(Y|X = x_i)

            = \sum^{a}_{i=1}P(X=x_i)\sum^{b}_{j=1}y_j*P(Y=y_j|X=x_i)

            =\sum^{a}_{i=1}\sum^{b}_{j=1}y_j*P(X=xi)*P(Y= y_i|X=x_i)

            =\sum^{a}_{i=1}\sum^{b}_{j=1}y_j×P(X=x_i,Y=y_j)

            =E(Y)

例如,一项工作由甲一个人完成,平均需要 4 小时,而乙有 0.4 的概率来帮忙,两个人完成平均只需要 3 小时。

若用 X 表示完成这项工作的人数,而 Y 表示完成的这项工作的期望时间(单位小时)

由于这项工作要么由一 个人完成, 要么由两个人完成,那么这项工作完成的期望时间

E(Y)=P(X=1)*E(Y|X=1)+P(X=2)*E(Y|X=2)=(1-0.4)*4-0.4*3=3.6​​​​​​​

(例题下次更新)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/149129.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Cascade-MVSNet论文笔记

Cascade-MVSNet论文笔记 摘要1 立体匹配(Stereo Matching)2 多视图立体视觉(Multi-View Stereo)3 立体视觉和立体视觉的高分辨率输出4 代价体表达方式(Cost volume Formulation)4.1 多视图立体视觉的3D代价…

github备忘保存列表

git大文件管理 https://github.com/git-lfs/git-lfs

RT-DETR优化改进:SEAM、MultiSEAM分割物与物相互遮挡、分割小目标性能

🚀🚀🚀本文改进:SEAM、MultiSEAM分割物体与物体相互遮挡性能 🚀🚀🚀SEAM、MultiSEAM分割物与物相互遮挡、分割小目标性能 🚀🚀🚀RT-DETR改进创新专栏:http://t.csdnimg.cn/vuQTz 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; RT-DETR模型创新…

数字化时代,VR全景如何助力商企抢占市场份额?

随着5G技术的逐步落地,VR全景已经开始逐渐被应用到各行各业中了,VR餐饮、VR房产、VR景区、VR工厂、VR学校、VR博物馆等等,甚至大家所熟悉的汽车之家中的全景看车、贝壳和链接的全景看房等,所应用的都是VR全景的形式。 前几年电商对…

设计模式(二)-创建者模式(2)-工厂模式

一、为何需要工厂模式(Factory Pattern)? 由于简单工厂模式存在一个缺点,如果工厂类创建的对象过多,使得代码变得越来越臃肿。这样导致工厂类难以扩展新实例,以及难以维护代码逻辑。于是在简单工厂模式的基础上&…

CentOS7开机启动 jar包

CentOS7开机自启动jar包 前言 例如:当我们虚拟机断电重启后,每次都需要手动输入启动jar包,非常麻烦 一、创建启动脚本 在root目录下创建/sh文件夹,并在文件夹下创建runJar-start.sh脚本文件 # mkdir /root/sh # vi runJar-st…

学习c#的第二十二天

目录 C# 索引器(Indexer) 表达式主体定义 索引器概述 使用索引器 备注 示例 1 可靠编程 接口中的索引器 属性和索引器之间的比较 C# 索引器(Indexer) 索引器是C#编程语言中的一个特性,它允许类或结构的实例像…

Arcgis js Api日常天坑问题3——加载geojson图层,元素无属性

Arcgis js api加载geojson的方法 GeoJSONLayer | API Reference | ArcGIS Maps SDK for JavaScript 4.28 | ArcGIS Developers 按照上面的方法,点击元素查询后,发现不带属性。 解决方法很简单,添加属性outFileds(如下&#xff…

HTML易忽略的角落【目录】

目前已有文章 **** 篇 本专栏是汇集了一些HTML常常被遗忘的知识,这里算是温故而知新,往往这些零碎的知识点,在你开发中能起到炸惊效果。我们每个人都没有过目不忘,过久不忘的本事,就让这一点点知识慢慢渗透你的脑海。 …

一句话总结敏捷实践中不同方法

敏捷实践是指一组优先考虑灵活性、协作和客户满意度的软件开发和项目管理原则和方法。 不同方法论的敏捷实践: 1、敏捷: Sprints:限时迭代(通常 2-4 周),在此期间创建潜在的可交付产品增量。每日站立会议…

用js切割文字,超出省略

因为项目需要,当人员超过两个事则进行超出省略,如将一个 “张三,李四,王五”,这样的字串切割成"张三,李四…" 效果: 主要用的是基础的切割法 isOutlier(text) {if (!text || text "") return;const parts text.split(","); // 使用逗号将字…

【canvas】了解canvas,并实现会议预定记录钟表盘、页面水印

初识canvas Canvas 有什么用 Canvas 允许使用直线、曲线、矩形、圆形等基本图形绘制出复杂的图形 Canvas 可以加载图像,并进行各种处理,如裁剪、缩放、旋转等操作 Canvas 可以通过 JavaScript 控制,所以你可以利用帧动画原理,…

QPair的介绍及用法

QPair是一个模板类,它存储一对值(key,value),可以是不同的数据类型。QPair的用法有以下几个方面: QPair的构造函数有以下几种形式: QPair():默认构造函数,创建一个空的QP…

Leetcode2937. 使三个字符串相等

Every day a Leetcode 题目来源:2937. 使三个字符串相等 解法1:枚举 设 len1、len2、len3 分别为字符串 s1、s2、s3 的长度。 min_len 是 3 个字符串长度的最小值。 枚举 len min_len 到 len 1,设 t1、t2、t3 分别是字符串 s1、s2、s…

全链路监控--pinpoint

一、pinpoint架构原理 架构组成 Pinpoint Agent:和自己运行的应用关联起来的探针 Pinpoint Collector:收集各种性能数据 Pinpoint-Web: 将收集到的数据显成为 WEB网页显示 HBase Storage: 存储收集到的数据 工作原理 pinpoint的核心思想是在各个服务节点之间彼此调用时&a…

flask创建步骤

1.在__init__.py中创建db对象 from flask_sqlalchemy import SQLAlchemy db SQLAlchemy()2.同样的在__init__.py中create_app函数中让app传入到db中 def create_app():app Flask(__name__)app.config.from_object(settings.DevelopmentConfig)app.register_blueprint(ac)ap…

Unity 6 是下一个 LTS 版本即将发布

Unity 公司宣布,即将发布 Unity 6,并表示其为下一个长期支持版本 (LTS)。 Unity 在大会上演示了全新的 Unity 6引擎,并通过 Syncy Studios 采用 Unity 6 制作的《幻想王国(Fantasy Kingdom)》Demo 进行了演示&#xff…

面试题 三

一、this 手写call //1、定义myCall方法 //3、接收剩余参数并返回结果 Function.prototype.myCall function (thisArg, ...arg) {// console.log(thisArg); //person对象// console.log(this); //func方法//2、设置this并调用原函数//下面三行代码有个缺陷就是如果pers…

JS算法练习 11.20

leetcode 2629 复合函数 请你编写一个函数,它接收一个函数数组 [f1, f2, f3,…, fn] ,并返回一个新的函数 fn ,它是函数数组的 复合函数 。 [f(x), g(x), h(x)] 的 复合函数 为 fn(x) f(g(h(…

「Verilog学习笔记」边沿检测

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点,刷题网站用的是牛客网 timescale 1ns/1ns module edge_detect(input clk,input rst_n,input a,output reg rise,output reg down );reg a_tem ; always (posedge clk or negedge rst_n) beginif…