【1.2】神经网络:神经元与激活函数

作者简介:大家好,我是 Meteors., 向往着更加简洁高效的代码写法与编程方式,持续分享Java技术内容。
🍎个人主页:Meteors.的博客
💞当前专栏: 神经网络(随缘更新)
特色专栏: 知识分享
🥭本文内容:【1.2】神经网络:神经元与激活函数
📚 ** ps **  : 阅读这篇文章如果有问题或者疑惑,欢迎各位在评论区提问或指出!

 -----------------------------------------------------       目录       ---------------------------------------------------------

目录

一、介绍

1. 简介

神经元

激活函数

2. 作用

神经元

激活函数

二、常见激活函数分类及特点

阶跃函数

恒等函数

Sigmoid 函数

ReLU函数

Softmax函数

ELU函数

Swish函数

反正切函数

 三、激活函数选择

非线性变换能力

梯度消失问题

计算效率

稀疏激活性

任务特性

实验和经验

四、激活函数改进

参数化激活函数

自适应激活函数

门控激活函数

带参数的激活函数

多阶段激活函数

五、 神经元和激活函数的组合

全连接层

卷积层

池化层

 六、神经元和激活函数的优化

正则化

批归一化

 残差连接

激活函数的选择


---------------------------------------------------------------------------------------------------------------------------------

一、介绍

1. 简介

神经元

人工神经网络是模拟人脑系统工作原理进行设计的计算模型。它包含很多(模拟)神经元,每个神经元接收来自其它神经元的输入,并通过激活函数处理这些输入,然后产生输出。



神经元通常由三部分组成:

  1. 输入层:接受来自其它神经元或外部输入的信号。
  2. 权重:每个输入信号都有一个权重与之对应,用于调节该信号对神经网络输出的影响程度。
  3. 激活函数:接收加权输入信号的总和,并将其映射到一个特定的输出范围内。

激活函数

神经元中,输入的的inputs通过加权,求和后,还会被作用一个函数,这个函数就是激活函数,它决定了神经元输出形式和范围。

2. 作用

神经元

每个神经元都有一个权重参数,用于调整输入数据的权重。神经元对输入数据进行加权求和,并将结果传递给激活函数。可以将它看作是神经网络中的基本单位。


激活函数

激活函数对于人工神经网络的学习,理解非常复杂和非线性函数来说具有重要的作用。它让神经元不会止步于线性的数学运算(没有激活函数的每层相当于矩阵相乘,就算增加若干层,无非也还是简单的矩阵相乘法罢了),而是让输入输出之间通过非线性形成更加复杂的关系,有效提高学习效率,使神经网络更加强大。

二、常见激活函数分类及特点

神经网络的激活函数通常是一种非线性函数,用于引入非线性特征,提高神经网络的表达能力,常见的神经网络激活函数分类:

  • 阶跃函数

    • 二元阶跃函数:将输入值映射为两个离散的输出值,通常是0和1。它在输入大于等于某个阈值时输出1,否则输出0。
    • 双曲正切阶跃函数:一个连续的版本,将输入值映射到[-1, 1]的范围内。它在输入大于等于某个阈值时输出1,小于该阈值时输出-1。
  • 恒等函数

    • 一种简单的线性函数,它将输入值原样输出。在神经网络中,恒等函数常用于回归问题。
  • Sigmoid 函数

    • Logistic 函数一种常用的Sigmoid函数,将输入值映射到[0, 1]的范围内。它具有平滑的S形曲线,常用于二分类问题和概率估计。
    • 双曲正切函数:将输入值映射到[-1, 1]的范围内。与Logistic函数相比,它的输出范围更广,适用于更广泛的问题。
  • ReLU函数

    • 一种非常简单且广泛使用的激活函数,它将负值映射为0,并保持正值不变。这使得ReLU函数在处理大规模数据和深层网络时非常高效。
      • Leaky ReLU函数:对ReLU函数的改进,当输入为负值时,它引入一个小的斜率,以避免出现“神经元死亡”问题。
      • Parametric ReLU函数:Leaky ReLU的扩展版本,它允许斜率成为可学习的参数。
      • Randomized Leaky ReLU函数:在Parametric ReLU的基础上引入了随机性,以增加模型的鲁棒性。
  • Softmax函数

    • Softmax函数用于多分类问题,将一组实数映射到[0, 1]的范围内,并且所有输出值的总和等于1。它常用于输出层,将神经网络的原始输出转换为概率分布。
  • ELU函数

    • 在负值区域引入了指数增长的特性,以解决ReLU函数在负值部分的限制。相比于ReLU,ELU函数在某些情况下可以提供更好的训练性能。
  • Swish函数

    • 一种近似于ReLU的激活函数,它在正值区域具有ReLU的性质,在负值区域引入了平滑的曲线。Swish函数在一些情况下可以提供更好的性能。
  • 反正切函数

    • 将输入值映射到[-π/2, π/2]的范围内。它是一个平滑的、具有对称性的函数,常用于某些特定的问题领域。


 三、激活函数选择

没有一种激活函数可以用于所有情况,通常情况下,激活函数的选择可以考虑下面几个方面:

  1. 非线性变换能力

    激活函数应该具有一定的非线性变换能力,以便神经网络可以学习非线性模式和复杂关系。常见的非线性激活函数如sigmoid、tanh、ReLU等。
  2. 梯度消失问题

    某些激活函数(如sigmoid和tanh)在输入较大或较小时,梯度会接近于零,导致梯度消失的问题。为了避免这个问题,可以选择具有更好梯度传播性质的激活函数,如ReLU、Leaky ReLU、ELU等。
  3. 计算效率

    激活函数的计算效率也是一个考虑因素。一些激活函数(如sigmoid和tanh)在计算上相对较慢,尤其是在大规模神经网络中。相比之下,ReLU和其变种计算速度更快。
  4. 稀疏激活性

    某些激活函数具有稀疏激活性,即只有部分神经元被激活,这有助于减少网络的参数数量和计算复杂度。例如,稀疏自编码器常使用稀疏激活函数如稀疏ReLU。
  5. 任务特性

    不同的任务可能对激活函数有不同的要求。例如,对于二分类问题,sigmoid函数在输出层上常被使用,而对于多分类问题,softmax函数更为常见。
  6. 实验和经验

    激活函数的选择也可以基于实验和经验。根据具体的任务、数据集和网络结构,通过尝试不同的激活函数并进行实验评估,找到最适合的激活函数。

四、激活函数改进

改进激活函数主要是为了提高网络性能和效率,常见的激活函数改进方法有下面这些:

  1. 参数化激活函数

    传统的激活函数是非参数化的,即没有可学习的参数。而参数化激活函数则引入了可学习的参数,使得激活函数可以根据数据进行自适应调整。例如,PReLU(Parametric ReLU)通过引入一个可学习的负斜率参数来改进ReLU,可以在一定程度上缓解ReLU的负数部分输出为零的问题。
  2. 自适应激活函数

    自适应激活函数是指根据输入数据动态调整激活函数的形状和参数。例如,AdaReLU(Adaptive ReLU)通过引入一个可学习的阈值参数,根据输入数据动态调整ReLU的形状,可以提高ReLU在不同数据分布下的表现。
  3. 门控激活函数

    门控激活函数是指通过引入门控机制来控制激活函数的输出。例如,GELU(Gaussian Error Linear Units)通过引入门控机制,可以在一定程度上缓解ReLU的负数部分输出为零的问题,并提高网络的性能。
  4. 带参数的激活函数

    带参数的激活函数是指在激活函数中引入额外的参数,以提高激活函数的表达能力和灵活性。例如,Swish激活函数通过引入一个可学习的参数,可以在一定程度上提高网络的性能。
  5. 多阶段激活函数

    多阶段激活函数是指将激活函数分为多个阶段,每个阶段使用不同的激活函数。例如,SELU(Scaled Exponential Linear Units)通过引入多个阶段的激活函数,可以提高网络的性能和稳定性。

五、 神经元和激活函数的组合

神经元是构成神经网络的基本单元,激活函数则是神经元中的一个重要组成部分。将神经元和激活函数组合起来,可以构建出不同类型的神经网络,包括全连接层、卷积层和池化层等。

下面简单介绍一下不同类型的层是如何组合的:

  1. 全连接层

    在全连接层中,每个神经元都与上一层的所有神经元相连接。每个连接都有一个权重,用于调整输入的重要性。神经元的输入是上一层神经元的输出乘以对应的权重之和。然后,这个加权和会经过激活函数的处理,得到神经元的输出。
  2. 卷积层

    在卷积层中,神经元只与输入数据的局部区域相连接。每个神经元有一个局部感受野(receptive field),它会与输入数据的对应区域进行卷积操作。卷积操作将局部感受野的输入与权重进行乘积求和,并通过激活函数进行处理,得到神经元的输出。
  3. 池化层

    在池化层中,神经元的作用是对输入数据进行降采样,减少数据的维度和计算量。常见的池化操作包括最大池化和平均池化。神经元在池化层中没有可学习的参数,它的作用仅仅是对输入数据进行池化操作,并将池化后的结果作为输出。

 六、神经元和激活函数的优化

实际中如果需要提高神经网络的性能和训练效果。通常会优化神经元和激活函数,常见方式包括正则化、批归一化和残差连接。下面是一些对它们的一些简单介绍:

正则化

通过在损失函数中添加正则项来控制模型的复杂度,避免过拟合。常见的正则化方法有L1正则化和L2正则化。

  1. L1正则化:将L1范数乘以一个正则化参数λ加到损失函数中,强制使得一些权重变为0,从而实现特征选择和稀疏性。
  2. L2正则化:将L2范数乘以一个正则化参数λ加到损失函数中,惩罚权重的平方和,使得权重值趋向于较小的值,防止过拟合。

批归一化

一种在深度神经网络中广泛使用的技术,通过对每一层的输入进行归一化来加速网络的收敛和提高泛化能力

  1. 批归一化的操作是在每一层的输入上进行的,将输入减去均值后再除以标准差,使得输入的均值为0,方差为1。
  2. 批归一化不仅可以加速网络的收敛,还有正则化的效果,能够一定程度上避免过拟合。

 残差连接

一种用于解决梯度消失和网络退化问题的技术,通过直接将某一层的输出与之前某一层的输入相加,使得信息能够更容易地传递。

  1. 残差连接可以有效地减少梯度消失的问题,使得网络能够更深更容易训练。
  2. 残差连接也有助于提高网络的表达能力,使得网络可以学习到更复杂的特征。

激活函数的选择

通过引入非线性,增加网络的表达能力。常见的激活函数包括Sigmoid、ReLU、Leaky ReLU、ELU等。

  1. Sigmoid函数:将输入映射到一个介于0和1之间的值,但它存在梯度饱和和输出不以0为中心的问题,不适合在深度神经网络中使用。
  2. ReLU函数:ReLU函数在正区间上输出输入值,而在负区间上输出0,解决了梯度饱和问题,但存在神经元死亡的问题。
  3. Leaky ReLU函数:在负区间上不是输出0,而是输出一个小的负数,解决了神经元死亡问题。
  4. ELU函数:在负区间上输出一个接近于0的值,解决了ReLU函数在负区间上不平滑的问题。


最后,

        后续内容会陆续更新,希望文章对你有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/122318.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于nodejs+vue食力派网上订餐系统

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

负载均衡--Haproxy

haproxy 他也是常用的负载均衡软件 nginx 支持四层转发,七层转发 haproxy也可以四层和七层转发 haproxy:法国人开发的威利塔罗在2000年基于C语言开发的一个开源软件 可以支持一万以上的并发请求 高性能的tcp和http负载均衡2.4 1.5.9 haproxy&#…

【Linux】解决缓存锁问题:无法获得锁 /var/lib/dpkg/lock-frontend

今天在运行apt-get update更新软件包后,突然发现安装新的软件出现了这个报错:正在等待缓存锁:无法获得锁 /var/lib/dpkg/lock-frontend。锁正由进程 1855(unattended-upgr)持有。如图。 这个错误通常是由于其他进程正在…

【Linux】安装与配置虚拟机及虚拟机服务器坏境配置与连接

目录 操作系统介绍 什么是操作系统 常见操作系统 UNIX操作系统 linux操作系统 mac操作系统 嵌入式操作系统 个人版本和服务器版本的区别 安装VMWare虚拟机 VMWare虚拟网卡 ​编辑 配置虚拟网络编辑器 ​编辑 安装配置Windows Server 2012 R2 安装Windows Server 2…

[动态规划] (二) LeetCode 面试题 08.01.三步问题

[动态规划] (二) LeetCode 面试题 08.01.三步问题 文章目录 [动态规划] (二) LeetCode 面试题 08.01.三步问题题意解析解题思路1.状态表示2.状态转移方程3.初始化和填表顺序4.返回值 代码实现总结 面试题 08.01. 三步问题 题意解析 (1) 小孩可以跳1-3阶台阶 (2) 结果很大&…

python实验2 π的计算

π的计算 1. 圆周率的介绍2. BBP公式计算圆周率3. 蒙特卡洛方法计算π 1. 圆周率的介绍 圆周率π自古就是人们计算的问题,π到底是什么,圆的周长与直径的比值或者是面积与半径的平方之比,或者是使sinx0的最小正数x。所以每一种定义每一种理解…

Qt5.15:MinGW64位编译Oracle 19c数据库驱动及代码测试 - 安装时没有选Sources处理办法

文章目录 0 代码仓库1 环境以及条件说明2 准备一:下载Oracle 19c驱动,需要下载两个包,注意分x86和x642.1 32位2.2 64位2.3 新建目录并解压缩2.4 记录路径2.4.1 x86需要的路径2.4.2 x64需要的路径 3 准备二:下载Sources源代码的两种…

策略路由和路由策略

目录 策略路由 路由策略 策略路由和路由策略 策略路由 Step1:配置ACL,匹配流量 acl number 2010 rule 10 permit source 192.168.10.0 0.0.0.255 acl number 2020 rule 10 permit source 192.168.20.0 0.0.0.255 Step2:流分类traffic classifier jiaoxue //匹配…

Navicat for MySQL 视图创建使用方法

创建视图步骤: 点击新建;选择视图;点击视图创建工具;可以在左侧拖拽表到工作区;选择表字段进行连线

​Vue3响应式原理

目录 手动收集依赖通知更新 effect():更改数据后执行,更新依赖该数据的数据(依赖) track()收集依赖的effect()放进dep(set去重) 更新时触发trigger函数通知dep里所有effect()执行…

uniapp 中添加 vconsole

uniapp 中添加 vconsole 一、安装 vconsole npm i vconsole二、使用 vconsole 在项目的 main.js 文件中添加如下内容 // #ifdef H5 // 提交前需要注释 本地调试使用 import * as vconsole from "vconsole"; new vconsole() // 使用 vconsole // #endif三、成功

Ansible简介

环境 控制节点:Ubuntu 22.04Ansible 2.10.8管理节点:CentOS 8 组成 Ansible环境主要由三部分组成: 控制节点(Control node):安装Ansible的节点,在此节点上运行Ansible命令管理节点&#xff…

Android 系统架构

目录 Android 系统架构 1. Android 应用层 2. Android应用框架层 2.1 Activity Manager (活动管理器) 2.2 Window Manager (窗口管理器) 2.3 Content Provider (内容提供器) 2.4 View System(视图系统&a…

Leetcode刷题详解——搜索插入位置

1. 题目链接:35. 搜索插入位置 2. 题目描述: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。…

JVM调优(10)JVM的运行时数据区

一、概述 对于 C C 来说,在内存管理领域,JVM既拥有最高的权利,但是同时他们又是从事最基础工作的劳动人员,因为他们担负着每一个对象从开始到结束的维护责任。而对于Java来说,再虚拟机自动内存管理的帮助下&#xff0…

x210项目重新回顾之十七升级到linux4.19.114 +buildroot2018再讨论

代码参考https://github.com/colourfate/x210_bsp/ 他的是linux_4.10(dtb为 s5pv210-x210..dtb)我打算用linux4.19.114(dtb为 s5pv210-smdkv210.dtb) ,所以修改build.sh ------------------------------------------------------------------------------ 5 M…

STM32 CAN使用

STM32 CAN使用 简介各种通讯接口对比报文总线上的报文信息表示为几种固定的赖类型数据帧列表模式掩码模式配置CAN配置参数位时序 简介 控制器局域网CAN(Controller Area Network)是由德国博世公司为汽车应用而开发的多主机局部网络,用于汽车的监测和控制…

智能水厂运行与调控3D模拟仿真在线展示提高整个系统的协同效应

水厂在生活中的重要性不可忽视。它们提供清洁、安全的水源,满足人们饮用、洗浴、烹饪等基本需求,保障公共卫生,预防疾病传播;同时,水厂也促进经济发展,为工业生产和农业灌溉提供保障,吸引和支持企业的投资和…

phar反序列化学习

PHP反序列化常见的是使用unserilize()进行反序列化,除此之外还有其它的反序列化方法,不需要用到unserilize()。就是用到phar反序列化。 Phar phar文件 Phar是将php文件打包而成的一种压缩文档,类似于Java中的jar包。它有一个特性就是phar文…

React Router初学者入门指南(2023版)

React Router,简单来说,是一个帮助处理React应用程序中导航和路由的库。它是用于管理React中路由的最流行的路由工具。如果你对路由的概念不熟悉,可以将其视为在网站的不同部分之间导航的过程。例如,当你进入网站的“联系我们”部…