【深蓝学院】手写VIO第8章--相机与IMU时间戳同步--笔记

0. 内容

在这里插入图片描述

1. 时间戳同步问题及意义

时间戳同步的原因:如果不同步,由于IMU频率高,可能由于时间戳不同步而导致在两帧camera之间的时间内用多了或者用少了IMU的数据,且时间不同步会导致我们首尾camera和IMU数据时间不同,会使估计存在误差,使我们的系统精度下降甚至出现错误的预测。如果以IMU时间为准确的,同步之后,我们可以用时间戳偏移对系统估计的 T w b T_{wb} Twb进行补偿(思路1),或者能够得到与首尾IMU时间相同的时间对应的两帧camera的观测(思路2),提升系统精度。

时间戳同步有两种方式:硬同步和软同步
在这里插入图片描述

  • 硬同步即硬件同步:即IMU(或其他传感器)产生数据的同时给一个信号,可用于出发MCU中断,然后触发camera曝光,使camera输出图像的时间戳本身就和IMU同步,从而实现硬件同步。
  • 软同步即软件同步:在软件上对收到的IMU和camera数据进行运算,解算出时间戳。具体来说,camera和IMU从产生到到达MCU是需要时间的,这段时间分别叫 t d c a m t_d^{cam} tdcam t d i m u t_d^{imu} tdimu,产生时间分别加上这个时延就的到了MCU采样的时间戳,二者相减就是真正的时间戳,这里我们只需要这个时间戳的相对量,所以我们可以假设IMU是准确的, t d i m u − t d c a m t_d^{imu}-t_d^{cam} tdimutdcam就是我们MCU所知的时间戳偏移 t d t_d td

在这里插入图片描述

1.1 思路1:补偿camera pose的估计(轨迹匀速模型)

位姿补偿公式思路:假设相机在两帧间是匀速运动。VIO输出的是系统在world系下的pose,即 T w b T_{wb} Twb,我们需要补偿的是 T w c T_{wc} Twc,于是就结合VIO输出的角速度,速度反向推到cam时刻(补偿了 t d t_d td之后的时刻),然后再用外参 T b c T_{bc} Tbc转到cam系下即可:
在这里插入图片描述

在VIO残差中进行补偿:

在这里插入图片描述

在这里插入图片描述

  1. 同样,我们VIO输出的是 T w b T_{wb} Twb所以我们要先将landmark转换到body,再转换到camera系:
  2. 这里实际上是在归一化平面,并没在像素平面(重投影误差的uv实际上是归一化平面的坐标,通过特征提取或者光流匹配而得),忽略了相机内参。
    将式(3)带入可的式(8)

重投影误差对时间戳延时 t d t_d td的Javobian:
在这里插入图片描述

式(9)推导,只看中间最复杂的部分, e x p ( ω b i t d + ω b i δ t d ) exp(\omega_{b_i}t_d+\omega_{b_i}\delta t_d) exp(ωbitd+ωbiδtd),这里好理解点的话实际上角速度 ω t \omega t ωt可以写成 ( ω t ) ∧ (\omega t)^{\wedge} (ωt),因为 ω t \omega t ωt可以代表一个三维的旋转矩阵,按照旋转的表达方式是轴角表示,即 旋转角度*旋转轴,可以看之前的一篇知乎
在这里插入图片描述
所以上述部分可以表示成 e x p [ ( ω b i t d + ω b i δ t d ) ∧ ] exp[(\omega_{b_i}t_d+\omega_{b_i}\delta t_d)^\wedge] exp[(ωbitd+ωbiδtd)],这只是便于理解,正常还是按照 ω t \omega t ωt表示,不加反对称符号。
所以,用到两个公式:

  1. 按照BCH公式的SO3版本:
    在这里插入图片描述
  2. 还有 e x e^x ex的无穷级数展开(跟太了展开差个无穷小), e x = 1 + x + x 2 2 ! + x 3 3 ! + … e^x=1+x+\frac{x_2}{2!}+\frac{x_3}{3!}+\ldots ex=1+x+2!x2+3!x3+,下面因为 ω b i δ t d \omega_{b_i}\delta t_d ωbiδtd较小,所以二阶以上直接忽略
    所以
    e x p ( ω b i t d + ω b i δ t d ) = e x p ( ω b i t d ) ∗ e x p { [ J r ( ω b i t d ) ω b i δ t d ] ∧ } = e x p ( ω b i t d ) ∗ { I + [ J r ( ω t d ) ω δ t d ] ∧ } \begin{align*}\ exp(\omega_{b_i}t_d+\omega_{b_i}\delta t_d) &=exp(\omega_{b_i}t_d) * exp\{[J_r(\omega_{b_i}t_d)\omega_{b_i}\delta t_d]^\wedge\}\\ &=exp(\omega_{b_i}t_d) * \{I + [J_r(\omega t_d)\omega \delta t_d]^\wedge \}\\ \end{align*}  exp(ωbitd+ωbiδtd)=exp(ωbitd)exp{[Jr(ωbitd)ωbiδtd]}=exp(ωbitd){I+[Jr(ωtd)ωδtd]}
    将上式带入式(9)就得BCH近似后的结果,因为是求关于时间戳 t d t_d td的Jacobian,所以将与 δ t d \delta t_d δtd有关的都拎出来,剩下的直接扔掉,就得到完整的式(9)。

由于补偿camera pose的估计改变了姿态,所以Jacobian的求取有些复杂,QinTong(2018,在待读文献2中)有一个想法是直接补偿我们特征点的测量值,计算出补偿值,应用于真实观测值上得到一个虚拟的观测值。

1.2 思路2:补偿观测值坐标(特征匀速模型)

在这里插入图片描述
具体思路是:根据特征匹配可以知道特征点uv的变化量,假设特征点是匀速运动,可以算出特征点的速度,知道了时间戳偏移 t d t_d td之后即可求出补偿后的虚拟的观测值坐标。

在这里插入图片描述
补偿观测值坐标由于只改变了观测的坐标,所以求Jacobian较简单,看(13)中与 t d t_d td有关的只有 − u , − v -u,-v u,v,所以求导就是 − V -V V

QinTong的paper论文实验结果和结论:

  • 时间戳补偿算法有用;
  • 时间戳延迟越大,系统精度下降越多。
    在这里插入图片描述

1.3 两种方法对比

  • 特征匀速模型的假设更强,是假设特征是匀速运动的,而实际上是非线性运动,并非匀速,且补偿方法也是线性的。
  • 而轨迹匀速模型的假设更接近实际,假设两帧间camera是匀速运动,补偿方法也是非线性的,所以精度比前者高。
    在这里插入图片描述
    实际中对时间戳偏差估计的收敛速度,轨迹匀速法更快。

2. 疑惑

这个是先采集一段数据先标定出来IMU和Camera的时间戳,然后按照上面的任意一种方法补偿到系统中,还是说边估计边补偿?

看了些论文的标题,应该是先标定出来的,后面看了论文再来填这个坑。

3. 时间戳同步算法扩展

在这里插入图片描述

前面有系统初始化完成之后来估计 t d t_d td的,当系统初始化没有完成时 t d t_d td如何估计呢?
可以通过VO/SFM求出KF pose,利用 T b c T_{bc} Tbc外参转到body系下,求出i,j时刻的相对位姿,跟IMU预计分量对比构建误差,多时刻观测量可进行BA,优化出时间戳(也可优化出gyro bias,速度等,但是优化的量多了之后,优化精度可能会下降)

在这里插入图片描述

4. 总结

本章主要讨论了在VIO系统中对camera和IMU时间戳进行对齐的问题,着重讨论了将Camera对齐IMU的两种方法:轨迹匀速模型和特征匀速模型。并对其他的VI时间戳同步算法进行了扩展。

  1. 针对轨迹匀速模型特征匀速模型
  • 前者假设两个KF间的camera之间是匀速运动,估计出时间戳延时 t d t_d td之后,将其补偿在估计的camera位姿上,该方法对VIO数据的pose进行了改动,对于系统Jacobian的改动较大,但假设相对后者较弱,精度比后者高。
  • 后者假设两帧KF间的特征点是匀速运动,估计出 t d t_d td后,将其补偿在特征点的观测上,计算出补偿之后的观测,该方法对Jacobian改动较小,而且为线性改动,但缺点也较为明显,因为该方法假设较强(特征较难满足匀速运动),所以精度比前者低,时间戳收敛速度比前者慢,但代码改动小,计算速度简单。
  1. 另外对时间戳同步算法进行了扩展:
  • 待读4改为对IMU进行时间戳补偿,精度更高;
  • 待读5用camera的pose计算出traj,进而得出 ω , a \omega, a ω,a,与IMU的进行align得出 t d t_d td(这个不清楚,需要读原文)
  • 待读6(提出Kalibr,行业标杆)使用标定板出一段camera pose,再使用B样条(B Spline)进行拟合,一阶,二阶导可以得出 ω , a \omega, a ω,a,和IMU数据进行align,优化出时间戳,不过使用的是autodiff 数值Jacobian。
  • 待读7推导出6的解析李群Jacobian。
还有疑惑,时间戳便宜$t_d$是先标定出来还是在优化过程中进行呢?后续再解。

5. 作业

在这里插入图片描述

6. 待读文献

1. 北大的,提出轨迹匀速模型

Weibo Huang, Hong Liu, and Weiwei Wan. “Online initialization and extrinsic spatial-temporal calibration for monocular visual-inertial odometry”. In: arXiv preprint arXiv:2004.05534 (2020).

2. QinTong提出特征匀速模型

Tong Qin and Shaojie Shen. “Online temporal calibration for monocular visual-inertial systems”. In: RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 3662–3669.

3. PTAM的特征匀速模型思路

Georg Klein and David Murray. “Parallel tracking and mapping on a camera phone”. In: 2009 8th IEEE International Symposium on Mixed and Augmented Reality. IEEE. 2009, pp. 83–86.
这篇是2009年的PTAM,里面的思想上面QinTong这篇一样。

4. 认为camera是准的,补偿IMU时间戳

Yonggen Ling et al. “Modeling varying camera-imu time offset in optimization-based visual-inertial odometry”. In: Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 484–500.
这篇相对于第1节的算法,假设更弱,虽然轨迹匀速是假设camera见是匀速运动,但是如果是Slinding Window中的KF相隔时间久,可能存在较大时间差,匀速假设不易成立。
这篇改为补偿IMU,由于IMU频率高,数据之间的匀速假设更接近真实值,所以精度会更高,但是每次估计出新的时间戳都需要重新进行IMU预先积分,导致计算量增大。(没看过原文,IMU预积分不能找出来和时间戳的关系吗,这样就不用每次重新计算了)。

5. 用camera估出来的 ω , a \omega,a ω,a和IMU测量值进行align,得到时间戳偏移

Janne Mustaniemi et al. “Inertial-based scale estimation for structure from motion on mobile devices”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 4394–4401.

6. ETH大组,Kalibr论文(行业标杆,必读)

Paul Furgale, Joern Rehder, and Roland Siegwart. “Unified temporal and spatial calibration for multi-sensor systems”. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 1280–1286.
Roland Siegwart好象是组的负责人。
使用标定板出一段camera pose,再使用B样条(B Spline)进行拟合,一阶,二阶导可以得出 ω , a \omega, a ω,a,和IMU数据进行align,优化出时间戳。但是解析解太复杂,这篇论文使用的autodiff数值Jacobian

7. 推导出解析Jacobian(DSO那个组,公式较多)

Christiane Sommer et al. “Efficient derivative computation for cumulative B-splines on Lie groups”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 11148–11156.
丹尼尔 crimse这个组

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119479.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

65、内网安全-域环境工作组局域网探针方案

目录 案例1-基本信息收集操作演示案例2-网络信息收集操作演示案例3-用户信息收集操作演示案例4-凭据信息收集操作演示案例5-探针主机域控架构服务操作演示涉及资源 我们攻击内网一般是借助web攻击,直接进去,然后再去攻击内网,那么攻击的对象一…

Redis 命令 和 数据类型 您知道多少

文章目录 一、概述二、Redis 命令行客户端连接 Redis 服务器三、在 Redis 帮助命令的说明四、Redis 通用命令 generic4.1 通用命令说明4.1 keys 命令,列举出当前库的所有键4.2 type 命令,可以查看键对应值的类型4.3 object encoding 命令,查看…

深度学习 anaconda 安装问题

配置anaconda 在官网下载匹配版本的anaconda(官网下载可能时间比较长),可以选择清华镜像。 安装过程默认即可,或者根据情况进行修改。 旧版本是可以在安装的时候勾选添加路径到环境变量中的,但是我安装的是2023.9月…

react 中setState 的三种写法

目录 1:使用对象形式的setState: 2:使用函数形式的setState: 3:使用回调函数: 1:使用对象形式的setState: this.setState({ count: 0 });2:使用函数形式的setState: this.setSt…

基于ResNet34的花朵分类

一.数据集准备 新建一个项目文件夹ResNet,并在里面建立data_set文件夹用来保存数据集,在data_set文件夹下创建新文件夹"flower_data",点击链接下载花分类数据集https://storage.googleapis.com/download.tensorflow.org/example_i…

Qt QWebEngine 更换语言

背景 使用Qt QWebEngine开发的应用,在一些场景下,会显示英文文本,比如右键、JS弹出的对话框,所以需要进行汉化,更改语言。 准备翻译文件 Qt有提供翻译好的ts文件,我们可以直接下载ts文件qtwebengine_zh_…

深度学习——图像分类(CIFAR-10)

深度学习——图像分类(CIFAR-10) 文章目录 前言一、实现图像分类1.1. 获取并组织数据集1.2. 划分训练集、验证集1.3. 图像增广1.4. 引入数据集1.5. 定义模型1.6. 定义训练函数1.7. 训练模型并保存模型参数 二、生成一个桌面小程序2.1. 使用QT设计师设计界…

【Unity程序技巧】异步保险箱管理器

👨‍💻个人主页:元宇宙-秩沅 👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍💻 本文由 秩沅 原创 👨‍💻 收录于专栏:Uni…

华为eNSP配置专题-路由策略的配置

文章目录 华为eNSP配置专题-路由策略的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、配置路由策略3.1、目标3.2、配置路由策略 华为eNSP配置专题-路由策略的配置 0、概要介绍 路由策略就是通过一系列工具…

【云原生】portainer管理多个独立docker服务器

目录 一、portainer简介 二、安装Portainer 1.1 内网环境下: 1.1.1 方式1:命令行运行 1.1.2 方式2:通过compose-file来启动 2.1 配置本地主机(node-1) 3.1 配置其他主机(被node-1管理的节点服务器&…

c++类和对象(1)

目录 目录: 1.类的定义 1.1:类的语法及相关概念 1.2:类的两种定义方式 1.3:类的成员变量名命名规范 2.类的访问限定符 2.1:三种访问限定符关键字引入 2.2:访问限定符的语法说明 2.3:c中struct与class的区别(面试常考) 3.类的作用域 4.类的实例化 5.类对象 5.1:类对…

uniapp实现webview页面关闭功能

实现思路: 1.关闭按钮是使用原生button添加的close属性。(见page.json页面) 2.监听关闭按钮的方法。(onNavigationBarButtonTap) 3.写实现关闭webview所有页面的逻辑。 废话不多说,直接上代码 1.page.…

《GB/T 8566-2022/ISO/IEC/IEEE:系统与软件工程生存周期过程》国家标准解读,附下载地址

关于企业架构、软件工程等相关内容,基本在行业内工作一段时间都能解释出各自的理解,网络资料更是知识爆炸,看似哪一种都对,其实相对都是个人理解,算不上严谨。 上周工作中涉及架构的企业标准编制审查,对严…

网工内推 | 国企,解决方案工程师,最高30k,有软考证书优先

01 中电信数智科技有限公司海南分公司 招聘岗位:解决方案经理(ICT) 职责描述: 1、负责调动前后端资源做好全省ICT业务的售前支撑服务工作。 2、根据实际项目需求,主动协同客户渠道开展ICT项目商机挖掘,促进…

用友U8SMSProxy -SQL注入漏洞

0x01 漏洞介绍 用友GRP-U8 R10政务管理软件是由用友政务公司基于云技术所推出的第十代政务产品。这款产品继承了用友R9、R9i、U8等行政事业版产品的各项优点,并融合了全国广大用户的最佳实践应用。它旨在为政府财政部门、社保部门、卫生部门、教育部门、民政部门、党…

【uniapp+云函数调用】人脸识别,实人认证,适用于app,具体思路解析,已实现

2023.10.8 需求: uniapp开发的app项目中使用人脸识别 app项目都是第一次搞,更别提人脸识别了。目前已有的就是Dcloud账号已申请,实现需求的时间没那么紧迫 此篇会详细记录从0到1的过程 2023.10.24 今天开始探究实现的过程 可能会记录的有些冗余 效果图如下: uniapp开发指南…

整个自动驾驶小车001:概述

材料: 1,树梅派4b,作为主控,这个东西有linux系统,方便 2,HC-S104超声波模块,我有多个,不少于4个,我可以前后左右四个方向都搞一个 3,l298n模块,…

【Linux】第三站:Linux基本指令(二)

文章目录 一、通配符 *二、man指令三、cp指令1.先给一个文件里面写入数据2. cp指令拷贝普通文件3.cp指令拷贝文件目录4.常用的选项总结 四、mv指令1.mv命令简介2.使用 五、一些插曲1.一些注意事项2.指令的本质3.再谈输出重定向4.追加重定向5.输入重定向 六、cat指令七、more指令…

springboot配置redis、Spring cache

1.Jedis库 依赖库 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>5.0.2</version> </dependency>使用案例&#xff1a; Testpublic void jedis(){Jedis jedis new Jedis("127…

光流法动目标检测

目录 前言 一、效果展示 二、光流法介绍 三、代码展示 总结 前言 动目标检测是计算机视觉领域的一个热门研究方向。传统的方法主要基于背景建模&#xff0c;但这些方法对于光照变化、遮挡和噪声敏感。因此&#xff0c;研究人员一直在寻找更加鲁棒和有效的技术来解决这一问题。…