基于ResNet34的花朵分类

一.数据集准备

新建一个项目文件夹ResNet,并在里面建立data_set文件夹用来保存数据集,在data_set文件夹下创建新文件夹"flower_data",点击链接下载花分类数据集https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz,会下载一个压缩包,将它解压到flower_data文件夹下,执行"split_data.py"脚本自动将数据集划分成训练集train和验证集val。

 split.py如下:

import os
from shutil import copy, rmtree
import randomdef mk_file(file_path: str):if os.path.exists(file_path):# 如果文件夹存在,则先删除原文件夹在重新创建rmtree(file_path)os.makedirs(file_path)def main():# 保证随机可复现random.seed(0)# 将数据集中10%的数据划分到验证集中split_rate = 0.1# 指向你解压后的flower_photos文件夹cwd = os.getcwd()data_root = os.path.join(cwd, "flower_data")origin_flower_path = os.path.join(data_root, "flower_photos")assert os.path.exists(origin_flower_path), "path '{}' does not exist.".format(origin_flower_path)flower_class = [cla for cla in os.listdir(origin_flower_path)if os.path.isdir(os.path.join(origin_flower_path, cla))]# 建立保存训练集的文件夹train_root = os.path.join(data_root, "train")mk_file(train_root)for cla in flower_class:# 建立每个类别对应的文件夹mk_file(os.path.join(train_root, cla))# 建立保存验证集的文件夹val_root = os.path.join(data_root, "val")mk_file(val_root)for cla in flower_class:# 建立每个类别对应的文件夹mk_file(os.path.join(val_root, cla))for cla in flower_class:cla_path = os.path.join(origin_flower_path, cla)images = os.listdir(cla_path)num = len(images)# 随机采样验证集的索引eval_index = random.sample(images, k=int(num*split_rate))for index, image in enumerate(images):if image in eval_index:# 将分配至验证集中的文件复制到相应目录image_path = os.path.join(cla_path, image)new_path = os.path.join(val_root, cla)copy(image_path, new_path)else:# 将分配至训练集中的文件复制到相应目录image_path = os.path.join(cla_path, image)new_path = os.path.join(train_root, cla)copy(image_path, new_path)print("\r[{}] processing [{}/{}]".format(cla, index+1, num), end="")  # processing barprint()print("processing done!")if __name__ == '__main__':main()

之后会在文件夹下生成train和val数据集,到此,完成了数据集的准备。

 二.定义网络

新建model.py,参照ResNet的网络结构和pytorch官方给出的代码,对代码进行略微的修改即可,首先定义了两个类BasicBlock和Bottleneck,分别对应着ResNet18、34和ResNet50、101、152,从下面这个图就可以区别开来。

可见,18和34层的网络,他们的conv2_x,conv3_x,conv4_x,conv5_x是相同的,不同的是每一个block的数量([2 2 2 2]和[3 4 6 3]),50和101和152层的网络,多了1*1卷积核,block数量也不尽相同。

接着定义了ResNet类,进行前向传播。对于34层的网络(这里借用了知乎牧酱老哥的图,18和34的block相同,所以用18的进行讲解),conv2_x和conv3_x对应的残差块对应的残差快在右侧展示出来(可以注意一下stride),当计算特征图尺寸时,要特别注意。在下方代码计算尺寸的部分我都进行了注释。

pytorch官方ResNet代码

修改后的train.py:

import torch.nn as nn
import torchclass BasicBlock(nn.Module):    #18 34层残差结构, 残差块expansion = 1def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channel)self.relu = nn.ReLU()self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channel)self.downsample = downsampledef forward(self, x):identity = xif self.downsample is not None:identity = self.downsample(x)    # 不为none,对应虚线残差结构(下需要1*1卷积调整维度),为none,对应实线残差结构(不需要1*1卷积)out = self.conv1(x)        out = self.bn1(out)out = self.relu(out)out = self.conv2(out)     out = self.bn2(out)out += identityout = self.relu(out)return outclass Bottleneck(nn.Module):    #50 101 152层残差结构"""注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,这么做的好处是能够在top1上提升大概0.5%的准确率。可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch"""expansion = 4def __init__(self, in_channel, out_channel, stride=1, downsample=None, groups=1, width_per_group=64):super(Bottleneck, self).__init__()width = int(out_channel * (width_per_group / 64.)) * groups# squeeze channelsself.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width, kernel_size=1, stride=1, bias=False)  self.bn1 = nn.BatchNorm2d(width)# -----------------------------------------self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,kernel_size=3, stride=stride, bias=False, padding=1)self.bn2 = nn.BatchNorm2d(width)# -----------------------------------------# unsqueeze channelsself.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion, kernel_size=1, stride=1, bias=False)  self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampledef forward(self, x):identity = xif self.downsample is not None:  # 不为none,对应虚线残差结构(下需要1*1卷积调整维度),为none,对应实线残差结构(不需要1*1卷积)identity = self.downsample(x)out = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)out += identityout = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, block, blocks_num, num_classes=1000, include_top=True, groups=1, width_per_group=64):super(ResNet, self).__init__()self.include_top = include_topself.in_channel = 64self.groups = groupsself.width_per_group = width_per_group# (channel height width)self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) # (3 224 224) -> (64 112 112)self.bn1 = nn.BatchNorm2d(self.in_channel)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)         # (64 112 112) -> (64 56 56)# 对于每一个block,第一次的两个卷积层stride=1和1,第二次stride=1和1self.layer1 = self._make_layer(block, 64, blocks_num[0])                # (64 56 56) -> (64 56 56)# 对于每一个block,第一次的两个卷积层stride=2和1,第二次stride=1和1self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)     # (64 56 56) -> (128 28 28)self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)     # (128 28 28) -> (256 14 14)self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)     # (256 28 28) -> (512 14 14)if self.include_top:self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)self.fc = nn.Linear(512 * block.expansion, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')def _make_layer(self, block, channel, block_num, stride=1):           # channel为当前block所使用的卷积核个数downsample = None if stride != 1 or self.in_channel != channel * block.expansion:   # 18和32不满足判断条件,会跳过;50 101 152会执行这部分downsample = nn.Sequential(nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(channel * block.expansion))layers = []layers.append(block(self.in_channel,channel,downsample=downsample,stride=stride,groups=self.groups,width_per_group=self.width_per_group))self.in_channel = channel * block.expansionfor _ in range(1, block_num):layers.append(block(self.in_channel,channel,groups=self.groups,width_per_group=self.width_per_group))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)if self.include_top:x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return xdef resnet34(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnet34-333f7ec4.pthreturn ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)def resnet50(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnet50-19c8e357.pthreturn ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)def resnet101(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnet101-5d3b4d8f.pthreturn ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)def resnext50_32x4d(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pthgroups = 32width_per_group = 4return ResNet(Bottleneck, [3, 4, 6, 3],num_classes=num_classes,include_top=include_top,groups=groups,width_per_group=width_per_group)def resnext101_32x8d(num_classes=1000, include_top=True):# https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pthgroups = 32width_per_group = 8return ResNet(Bottleneck, [3, 4, 23, 3],num_classes=num_classes,include_top=include_top,groups=groups,width_per_group=width_per_group)if __name__ == "__main__":resnet = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=5)in_data = torch.randn(1, 3, 224, 224)out = resnet(in_data)print(out)

完成网络的定义之后,可以单独执行一下这个文件,用来验证网络定义的是否正确。如果可以正确输出,就没问题。

在这里输出为

tensor([[-0.4490,  0.5792, -0.5026, -0.6024,  0.1399]],
grad_fn=<AddmmBackward0>)

说明网络定义正确。

三.开始训练

 加载数据集

首先定义一个字典,用于用于对train和val进行预处理,包括裁剪成224*224大小,训练集随机水平翻转(一般验证集不需要此操作),转换成张量,图像归一化。

然后利用DataLoader模块加载数据集,并设置batch_size为16,同时,设置数据加载器的工作进程数nw,加快速度。

import os
import sys
import jsonimport torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
from tqdm import tqdmfrom model import resnet34def main():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(f"using {device} device.")data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 获取数据集路径image_path = os.path.join(os.getcwd(), "data_set", "flower_data")assert os.path.exists(image_path), f"{image_path} path does not exist."# 加载数据集,准备读取train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"), transform=data_transform["train"])validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])nw = min([os.cpu_count(), 16 if 16 > 1 else 0, 8])  # number of workers,加速图像预处理print(f'Using {nw} dataloader workers every process')# 加载数据集train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=nw)validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=16, shuffle=False, num_workers=nw)train_num = len(train_dataset)val_num = len(validate_dataset)print(f"using {train_num} images for training, {val_num} images for validation.")

生成json文件

将训练数据集的类别标签转换为字典格式,并将其写入名为'class_indices.json'的文件中。

  1. train_dataset中获取类别标签到索引的映射关系,存储在flower_list变量中。
  2. 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dict,其中键是原始类别标签,值是对应的索引。
  3. 使用json.dumps()函数将cla_dict转换为JSON格式的字符串,设置缩进为4个空格。
  4. 使用with open()语句以写入模式打开名为'class_indices.json'的文件,并将JSON字符串写入文件
   # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 雏菊 蒲公英 玫瑰 向日葵 郁金香# 从训练集中获取类别标签到索引的映射关系,存储在flower_list变量flower_list = train_dataset.class_to_idx# 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dictcla_dict = dict((val, key) for key, val in flower_list.items())# write dict into json filejson_str = json.dumps(cla_dict, indent=4)with open('class_indices.json', 'w') as json_file:json_file.write(json_str)

加载预训练模型开始训练

首先定义网络对象net,在这里我们使用了迁移学习来使网络训练效果更好;使用net.fc = nn.Linear(in_channel, 5)设置输出类别数(这里为5);训练10轮,并使用train_bar = tqdm(train_loader, file=sys.stdout)来可视化训练进度条,之后再进行反向传播和参数更新;同时,每一轮训练完成都要进行学习率更新;之后开始对验证集进行计算精确度,完成后保存模型。

    # load pretrain weights# download url: https://download.pytorch.org/models/resnet34-333f7ec4.pthnet = resnet34()model_weight_path = "./resnet34-pre.pth"assert os.path.exists(model_weight_path), f"file {model_weight_path} does not exist."net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))# change fc layer structurein_channel = net.fc.in_featuresnet.fc = nn.Linear(in_channel, 5)net.to(device)loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam([p for p in net.parameters() if p.requires_grad], lr=0.0001)epochs = 10best_acc = 0.0train_steps = len(train_loader)for epoch in range(epochs):# trainnet.train()running_loss = 0.0train_bar = tqdm(train_loader, file=sys.stdout)for step, data in enumerate(train_bar):images, labels = dataoptimizer.zero_grad()logits = net(images.to(device))loss = loss_function(logits, labels.to(device))loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()train_bar.desc = "train epoch[{epoch + 1}/{epochs}] loss:{loss:.3f}"# validatenet.eval()acc = 0.0  # accumulate accurate number / epochwith torch.no_grad():val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar:val_images, val_labels = val_dataoutputs = net(val_images.to(device))# loss = loss_function(outputs, test_labels)predict_y = torch.max(outputs, dim=1)[1]acc += torch.eq(predict_y, val_labels.to(device)).sum().item()val_bar.desc = f"valid epoch[{epoch + 1}/{epochs}]"val_accurate = acc / val_numprint('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %(epoch + 1, running_loss / train_steps, val_accurate))if val_accurate > best_acc:best_acc = val_accuratetorch.save(net, "./resnet.pth")print('Finished Training')

最后对代码进行整理,完整的train.py如下

import os
import sys
import jsonimport torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
from tqdm import tqdmfrom model import resnet34def main():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(f"using {device} device.")data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 获取数据集路径image_path = os.path.join(os.getcwd(), "data_set", "flower_data")assert os.path.exists(image_path), f"{image_path} path does not exist."# 加载数据集,准备读取train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"), transform=data_transform["train"])validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"), transform=data_transform["val"])nw = min([os.cpu_count(), 16 if 16 > 1 else 0, 8])  # number of workers,加速图像预处理print(f'Using {nw} dataloader workers every process')# 加载数据集train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=nw)validate_loader = torch.utils.data.DataLoader(validate_dataset, batch_size=16, shuffle=False, num_workers=nw)train_num = len(train_dataset)val_num = len(validate_dataset)print(f"using {train_num} images for training, {val_num} images for validation.")# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4} 雏菊 蒲公英 玫瑰 向日葵 郁金香# 从训练集中获取类别标签到索引的映射关系,存储在flower_list变量flower_list = train_dataset.class_to_idx# 使用列表推导式将flower_list中的键值对反转,得到一个新的字典cla_dictcla_dict = dict((val, key) for key, val in flower_list.items())# write dict into json filejson_str = json.dumps(cla_dict, indent=4)with open('class_indices.json', 'w') as json_file:json_file.write(json_str)# load pretrain weights# download url: https://download.pytorch.org/models/resnet34-333f7ec4.pthnet = resnet34()model_weight_path = "./resnet34-pre.pth"assert os.path.exists(model_weight_path), f"file {model_weight_path} does not exist."net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))# change fc layer structurein_channel = net.fc.in_featuresnet.fc = nn.Linear(in_channel, 5)net.to(device)loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam([p for p in net.parameters() if p.requires_grad], lr=0.0001)epochs = 10best_acc = 0.0train_steps = len(train_loader)for epoch in range(epochs):# trainnet.train()running_loss = 0.0train_bar = tqdm(train_loader, file=sys.stdout)for step, data in enumerate(train_bar):images, labels = dataoptimizer.zero_grad()logits = net(images.to(device))loss = loss_function(logits, labels.to(device))loss.backward()optimizer.step()# print statisticsrunning_loss += loss.item()train_bar.desc = "train epoch[{epoch + 1}/{epochs}] loss:{loss:.3f}"# validatenet.eval()acc = 0.0  # accumulate accurate number / epochwith torch.no_grad():val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar:val_images, val_labels = val_dataoutputs = net(val_images.to(device))# loss = loss_function(outputs, test_labels)predict_y = torch.max(outputs, dim=1)[1]acc += torch.eq(predict_y, val_labels.to(device)).sum().item()val_bar.desc = f"valid epoch[{epoch + 1}/{epochs}]"val_accurate = acc / val_numprint('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %(epoch + 1, running_loss / train_steps, val_accurate))if val_accurate > best_acc:best_acc = val_accuratetorch.save(net, "./resnet.pth")print('Finished Training')if __name__ == '__main__':main()

四.模型预测

新建一个predict.py文件用于预测,将输入图像处理后转换成张量格式,img = torch.unsqueeze(img, dim=0)是在输入图像张量 img 的第一个维度上增加一个大小为1的维度,因此将图像张量的形状从 [通道数, 高度, 宽度 ] 转换为 [1, 通道数, 高度, 宽度]。然后加载模型进行预测,并打印出结果,同时可视化。

import os
import jsonimport torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as pltfrom model import resnet34def main():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")data_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# load imageimg = Image.open("./2536282942_b5ca27577e.jpg")plt.imshow(img)# [N, C, H, W]img = data_transform(img)# expand batch dimension# 在输入图像张量 img 的第一个维度上增加一个大小为1的维度# 将图像张量的形状从 [通道数, 高度, 宽度 ] 转换为 [1, 通道数, 高度, 宽度]img = torch.unsqueeze(img, dim=0)# read class_indictwith open('./class_indices.json', "r") as f:class_indict = json.load(f)# create modelmodel = resnet34(num_classes=5).to(device)model = torch.load("./resnet34.pth")# predictionmodel.eval()with torch.no_grad():# predict classoutput = torch.squeeze(model(img.to(device))).cpu()predict = torch.softmax(output, dim=0)predict_class = torch.argmax(predict).numpy()print_result = f"class: {class_indict[str(predict_class)]}   prob: {predict[predict_class].numpy():.3}"plt.title(print_result)for i in range(len(predict)):print(f"class: {class_indict[str(i)]:10}   prob: {predict[i].numpy():.3}")plt.show()if __name__ == '__main__':main()

预测结果

五.模型可视化

将生成的pth文件导入netron工具,可视化结果为

发现很不清晰,因此将它转换成多用于嵌入式设备部署的onnx格式

编写onnx.py

import torch
import torchvision
from model import resnet34device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = resnet34(num_classes=5).to(device)
model=torch.load("/home/lm/Resnet/resnet34.pth")
model.eval()
example = torch.ones(1, 3, 244, 244)
example = example.to(device)
torch.onnx.export(model, example, "resnet34.onnx", verbose=True, opset_version=11)

  将生成的onnx文件导入,这样的可视化清晰了许多

 六.批量数据预测

现在新建一个dta文件夹,里面放入五类带预测的样本,编写代码完成对整个文件夹下所有样本的预测,即批量预测。

batch_predict.py如下:

import os
import jsonimport torch
from PIL import Image
from torchvision import transformsfrom model import resnet34def main():device = torch.device("cuda" if torch.cuda.is_available() else "cpu")data_transform = transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])# load image# 指向需要遍历预测的图像文件夹imgs_root = "./data/imgs"# 读取指定文件夹下所有jpg图像路径img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")]# read class_indictjson_file = open('./class_indices.json', "r")class_indict = json.load(json_file)# create modelmodel = resnet34(num_classes=5).to(device)model = torch.load("./resnet34.pth")# predictionmodel.eval()batch_size = 8  # 每次预测时将多少张图片打包成一个batchwith torch.no_grad():for ids in range(0, len(img_path_list) // batch_size):img_list = []for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]:img = Image.open(img_path)img = data_transform(img)img_list.append(img)# batch img# 将img_list列表中的所有图像打包成一个batchbatch_img = torch.stack(img_list, dim=0)# predict classoutput = model(batch_img.to(device)).cpu()predict = torch.softmax(output, dim=1)probs, classes = torch.max(predict, dim=1)for idx, (pro, cla) in enumerate(zip(probs, classes)):print(f"image: {img_path_list[ids*batch_size+idx]}  class: {class_indict[str(cla.numpy())]}  prob: {pro.numpy():.3}")if __name__ == '__main__':main()

运行之后,输出

image: ./data/imgs/455728598_c5f3e7fc71_m.jpg  class: dandelion  prob: 0.989
image: ./data/imgs/3464015936_6845f46f64.jpg  class: dandelion  prob: 0.999
image: ./data/imgs/3461986955_29a1abc621.jpg  class: dandelion  prob: 0.996
image: ./data/imgs/8223949_2928d3f6f6_n.jpg  class: dandelion  prob: 0.991
image: ./data/imgs/10919961_0af657c4e8.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/10443973_aeb97513fc_m.jpg  class: dandelion  prob: 0.906
image: ./data/imgs/8475758_4c861ab268_m.jpg  class: dandelion  prob: 0.805
image: ./data/imgs/3857059749_fe8ca621a9.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2457473644_5242844e52_m.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/146023167_f905574d97_m.jpg  class: dandelion  prob: 0.998
image: ./data/imgs/2502627784_4486978bcf.jpg  class: dandelion  prob: 0.488
image: ./data/imgs/2481428401_bed64dd043.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/13920113_f03e867ea7_m.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2535769822_513be6bbe9.jpg  class: dandelion  prob: 0.997
image: ./data/imgs/3954167682_128398bf79_m.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2516714633_87f28f0314.jpg  class: dandelion  prob: 0.998
image: ./data/imgs/2634665077_597910235f_m.jpg  class: dandelion  prob: 0.996
image: ./data/imgs/3502447188_ab4a5055ac_m.jpg  class: dandelion  prob: 0.999
image: ./data/imgs/425800274_27dba84fac_n.jpg  class: dandelion  prob: 0.422
image: ./data/imgs/3365850019_8158a161a8_n.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/674407101_57676c40fb.jpg  class: dandelion  prob: 1.0
image: ./data/imgs/2628514700_b6d5325797_n.jpg  class: dandelion  prob: 0.999
image: ./data/imgs/3688128868_031e7b53e1_n.jpg  class: dandelion  prob: 0.962
image: ./data/imgs/2502613166_2c231b47cb_n.jpg  class: dandelion  prob: 1.0

完成预期功能(这里我的样本都是dandelion,当然混合的也可以)

七.模型改进

当不加载预训练模型,而从头开始训练的话,当epoch为50时,经实际训练,准确率为80%多,但当加载预训练模型时,完成第一次迭代准确率就已达到了90%,这也正说明了迁移学习的好处。

同时,这里采用的是Resnet34,也可以尝试更深的50、101、152层网络。

还有其他方法会在之后进行补充。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119474.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt QWebEngine 更换语言

背景 使用Qt QWebEngine开发的应用&#xff0c;在一些场景下&#xff0c;会显示英文文本&#xff0c;比如右键、JS弹出的对话框&#xff0c;所以需要进行汉化&#xff0c;更改语言。 准备翻译文件 Qt有提供翻译好的ts文件&#xff0c;我们可以直接下载ts文件qtwebengine_zh_…

深度学习——图像分类(CIFAR-10)

深度学习——图像分类&#xff08;CIFAR-10&#xff09; 文章目录 前言一、实现图像分类1.1. 获取并组织数据集1.2. 划分训练集、验证集1.3. 图像增广1.4. 引入数据集1.5. 定义模型1.6. 定义训练函数1.7. 训练模型并保存模型参数 二、生成一个桌面小程序2.1. 使用QT设计师设计界…

【Unity程序技巧】异步保险箱管理器

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

华为eNSP配置专题-路由策略的配置

文章目录 华为eNSP配置专题-路由策略的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、配置路由策略3.1、目标3.2、配置路由策略 华为eNSP配置专题-路由策略的配置 0、概要介绍 路由策略就是通过一系列工具…

【云原生】portainer管理多个独立docker服务器

目录 一、portainer简介 二、安装Portainer 1.1 内网环境下&#xff1a; 1.1.1 方式1&#xff1a;命令行运行 1.1.2 方式2&#xff1a;通过compose-file来启动 2.1 配置本地主机&#xff08;node-1&#xff09; 3.1 配置其他主机&#xff08;被node-1管理的节点服务器&…

c++类和对象(1)

目录 目录&#xff1a; 1.类的定义 1.1:类的语法及相关概念 1.2:类的两种定义方式 1.3:类的成员变量名命名规范 2.类的访问限定符 2.1:三种访问限定符关键字引入 2.2:访问限定符的语法说明 2.3:c中struct与class的区别(面试常考) 3.类的作用域 4.类的实例化 5.类对象 5.1:类对…

uniapp实现webview页面关闭功能

实现思路&#xff1a; 1.关闭按钮是使用原生button添加的close属性。&#xff08;见page.json页面&#xff09; 2.监听关闭按钮的方法。&#xff08;onNavigationBarButtonTap&#xff09; 3.写实现关闭webview所有页面的逻辑。 废话不多说&#xff0c;直接上代码 1.page.…

《GB/T 8566-2022/ISO/IEC/IEEE:系统与软件工程生存周期过程》国家标准解读,附下载地址

关于企业架构、软件工程等相关内容&#xff0c;基本在行业内工作一段时间都能解释出各自的理解&#xff0c;网络资料更是知识爆炸&#xff0c;看似哪一种都对&#xff0c;其实相对都是个人理解&#xff0c;算不上严谨。 上周工作中涉及架构的企业标准编制审查&#xff0c;对严…

网工内推 | 国企,解决方案工程师,最高30k,有软考证书优先

01 中电信数智科技有限公司海南分公司 招聘岗位&#xff1a;解决方案经理&#xff08;ICT&#xff09; 职责描述&#xff1a; 1、负责调动前后端资源做好全省ICT业务的售前支撑服务工作。 2、根据实际项目需求&#xff0c;主动协同客户渠道开展ICT项目商机挖掘&#xff0c;促进…

用友U8SMSProxy -SQL注入漏洞

0x01 漏洞介绍 用友GRP-U8 R10政务管理软件是由用友政务公司基于云技术所推出的第十代政务产品。这款产品继承了用友R9、R9i、U8等行政事业版产品的各项优点&#xff0c;并融合了全国广大用户的最佳实践应用。它旨在为政府财政部门、社保部门、卫生部门、教育部门、民政部门、党…

【uniapp+云函数调用】人脸识别,实人认证,适用于app,具体思路解析,已实现

2023.10.8 需求: uniapp开发的app项目中使用人脸识别 app项目都是第一次搞,更别提人脸识别了。目前已有的就是Dcloud账号已申请,实现需求的时间没那么紧迫 此篇会详细记录从0到1的过程 2023.10.24 今天开始探究实现的过程 可能会记录的有些冗余 效果图如下: uniapp开发指南…

整个自动驾驶小车001:概述

材料&#xff1a; 1&#xff0c;树梅派4b&#xff0c;作为主控&#xff0c;这个东西有linux系统&#xff0c;方便 2&#xff0c;HC-S104超声波模块&#xff0c;我有多个&#xff0c;不少于4个&#xff0c;我可以前后左右四个方向都搞一个 3&#xff0c;l298n模块&#xff0c;…

【Linux】第三站:Linux基本指令(二)

文章目录 一、通配符 *二、man指令三、cp指令1.先给一个文件里面写入数据2. cp指令拷贝普通文件3.cp指令拷贝文件目录4.常用的选项总结 四、mv指令1.mv命令简介2.使用 五、一些插曲1.一些注意事项2.指令的本质3.再谈输出重定向4.追加重定向5.输入重定向 六、cat指令七、more指令…

springboot配置redis、Spring cache

1.Jedis库 依赖库 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>5.0.2</version> </dependency>使用案例&#xff1a; Testpublic void jedis(){Jedis jedis new Jedis("127…

光流法动目标检测

目录 前言 一、效果展示 二、光流法介绍 三、代码展示 总结 前言 动目标检测是计算机视觉领域的一个热门研究方向。传统的方法主要基于背景建模&#xff0c;但这些方法对于光照变化、遮挡和噪声敏感。因此&#xff0c;研究人员一直在寻找更加鲁棒和有效的技术来解决这一问题。…

C# 串口通信简单示例

C# 简单串口通信示例 串口通信示例代码 串口通信 C# 串口通信主要操作&#xff1a; 命名空间&#xff1a;using System.IO.Ports;获取端口&#xff1a;string[] ports System.IO.Ports.SerialPort.GetPortNames();设置端口名&#xff1a;serialPort1.PortName “COM1”; //…

vue3中常用的新组件

一、Fragment vue2中&#xff0c;组件必须有一个根标签 vue3中&#xff0c;组件可以没有根标签&#xff0c;内部会将多个标签包含在一个Fragment虚拟元素中。 优点&#xff1a;减少标签层级。 二、Teleport&#xff08;传送门&#xff09; 作用&#xff1a;将组件的 html …

渗透测试tomcat错误信息泄露解决办法

解决方法&#xff1a; 1、使用tomcat8.5.16&#xff0c;会重定向非法url到登录url 2、配置server.xml&#xff0c;加上 <Valve className"org.apache.catalina.valves.ErrorReportValve" showReport"false" showServerInfo"false" />配置…

C++ 模板和泛型编程详解

C中的模板和泛型编程是非常重要的概念。模板是一种将数据类型作为参数的通用程序设计方法。它们允许开发人员编写可以处理各种数据类型的代码&#xff0c;而无需为每种数据类型编写不同的代码。下面介绍了一些关于C中模板和泛型编程的重要知识点 模板的定义 模板是一种通用程序…

opencalib中lidar2camera安装记录

目录 一、opencalib安装 二、lidar2camera的安装 三、测试运行 四、出现过的问题 一、opencalib安装 代码地址&#xff1a;https://github.com/PJLab-ADG/SensorsCalibration/blob/master/README.md # pull docker image sudo docker pull scllovewkf/opencalib:v1 # Aft…