深度学习——图像分类(CIFAR-10)

深度学习——图像分类(CIFAR-10)

文章目录

  • 前言
  • 一、实现图像分类
    • 1.1. 获取并组织数据集
    • 1.2. 划分训练集、验证集
    • 1.3. 图像增广
    • 1.4. 引入数据集
    • 1.5. 定义模型
    • 1.6. 定义训练函数
    • 1.7. 训练模型并保存模型参数
  • 二、生成一个桌面小程序
    • 2.1. 使用QT设计师设计界面
    • 2.2. 代码实现
  • 总结


前言

CIFAR-10数据集是一个常用的图像分类数据集,数据集的类别包括:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。
本章将使用Resnet18模型来对图像进行分类,并形成一个小的exe程序。

参考书:
《动手学深度学习》
参考文章


一、实现图像分类

以下模型训练皆在kaggle中

1.1. 获取并组织数据集

直接在kaggle官网的CIFAR-10竞赛中下载压缩包,得到图像数据集(图像为png格式)。

在这里插入图片描述

将下载后的压缩包导入kaggle中的自己的notebook中

在这里插入图片描述

将train文件夹中的图像与其对应的标签文件trainLabels.csv对应,形成字典格式

import collections
import math
import os
import shutil
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l#我们用以下函数读取CSV文件中的标签,它返回一个字典,该字典将文件名中不带扩展名的部分映射到其标签。data_dir = "/kaggle/input/cifar-10/CIFAR-10.data/"# @save
def read_csv_labels(fname):"""读取fname来给标签字典返回一个文件名"""with open(fname, 'r') as f:# 跳过文件头行(列名)lines = f.readlines()[1:]tokens = [l.rstrip().split(',') for l in lines]return dict(((name, label) for name, label in tokens))labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# 训练样本 :', len(labels))
print('# 类别 :', len(set(labels.values())))

1.2. 划分训练集、验证集

为了确保验证集是从原始训练集中的每一类的10%,我们将原始的文件复制到新的目录,再来划分。

target_dir = '/kaggle/working/my_directory'#我们定义reorg_train_valid函数来将验证集从原始的训练集中拆分出来。
#此函数中的参数valid_ratio是验证集中的样本数与原始训练集中的样本数之比。def copyfile(filename, target_dir):"""将文件复制到目标目录"""os.makedirs(target_dir, exist_ok=True)shutil.copy(filename, target_dir)def reorg_train_valid(data_dir, labels, valid_ratio):"""将验证集从原始的训练集中拆分出来"""# 训练数据集中样本最少的类别中的样本数n = collections.Counter(labels.values()).most_common()[-1][1]# 验证集中每个类别的样本数n_valid_per_label = max(1, math.floor(n * valid_ratio))label_count = {}for train_file in os.listdir(os.path.join(data_dir, 'train')):label = labels[train_file.split('.')[0]]fname = os.path.join(data_dir, 'train', train_file)copyfile(fname, os.path.join(target_dir, 'train_valid_test','train_valid', label))if label not in label_count or label_count[label] < n_valid_per_label:copyfile(fname, os.path.join(target_dir, 'train_valid_test','valid', label))label_count[label] = label_count.get(label, 0) + 1else:copyfile(fname, os.path.join(target_dir, 'train_valid_test','train', label))return n_valid_per_label#下面的reorg_test函数用来在预测期间整理测试集,以方便读取。
def reorg_test(data_dir):"""在预测期间整理测试集,以方便读取"""for test_file in os.listdir(os.path.join(data_dir, 'test')):copyfile(os.path.join(data_dir, 'test', test_file),os.path.join(target_dir, 'train_valid_test', 'test','unknown'))#最后,我们使用一个函数来调用前面定义的函数read_csv_labels、reorg_train_valid和reorg_test
def reorg_cifar10_data(data_dir, valid_ratio):labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))reorg_train_valid(data_dir, labels, valid_ratio)reorg_test(data_dir)#我们将10%的训练样本作为调整超参数的验证集
batch_size = 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)

1.3. 图像增广

使用图像增广来解决过拟合的问题。例如在训练中,
我们可以随机水平翻转图像。 我们还可以对彩色图像的三个RGB通道执行标准化

#图像增广
transform_train = torchvision.transforms.Compose([# 在高度和宽度上将图像放大到40像素的正方形torchvision.transforms.Resize(40),# 随机裁剪出一个高度和宽度均为40像素的正方形图像,# 生成一个面积为原始图像面积0.64~1倍的小正方形,# 然后将其缩放为高度和宽度均为32像素的正方形torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),ratio=(1.0, 1.0)),torchvision.transforms.RandomHorizontalFlip(),torchvision.transforms.ToTensor(),# 标准化图像的每个通道torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010])])#在测试期间,我们只对图像执行标准化,以消除评估结果中的随机性。
transform_test = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],[0.2023, 0.1994, 0.2010])])

1.4. 引入数据集


#接下来,我们[读取由原始图像组成的数据集],每个样本都包括一张图片和一个标签。
train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(os.path.join(target_dir, 'train_valid_test', folder),transform=transform_train) for folder in ['train', 'train_valid']]valid_ds, test_ds = [torchvision.datasets.ImageFolder(os.path.join(target_dir, 'train_valid_test', folder),transform=transform_test) for folder in ['valid', 'test']]"""
在训练期间,我们需要[指定上面定义的所有图像增广操作]。 当验证集在超参数调整过程中用于模型评估时,不应引入图像增广的随机性。 
在最终预测之前,我们根据训练集和验证集组合而成的训练模型进行训练,以充分利用所有标记的数据。
"""
train_iter, train_valid_iter = [torch.utils.data.DataLoader(dataset, batch_size, shuffle=True, drop_last=True)for dataset in (train_ds, train_valid_ds)]valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,drop_last=True)test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,drop_last=False)

1.5. 定义模型

以Resnet-18模型为例

#定义模型,定义了Resnet-18模型
def get_net():num_classes = 10net = d2l.resnet18(num_classes, 3)return netloss = nn.CrossEntropyLoss(reduction="none")

1.6. 定义训练函数


#我们将根据模型在验证集上的表现来选择模型并调整超参数。 下面我们定义了模型训练函数train
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,lr_decay):trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9,weight_decay=wd)scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)num_batches, timer = len(train_iter), d2l.Timer()legend = ['train loss', 'train acc']if valid_iter is not None:legend.append('valid acc')animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=legend)net = nn.DataParallel(net, device_ids=devices).to(devices[0])for epoch in range(num_epochs):net.train()metric = d2l.Accumulator(3)for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = d2l.train_batch_ch13(net, features, labels,loss, trainer, devices)metric.add(l, acc, labels.shape[0])timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[2],None))if valid_iter is not None:valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)animator.add(epoch + 1, (None, None, valid_acc))scheduler.step()measures = (f'train loss {metric[0] / metric[2]:.3f}, 'f'train acc {metric[1] / metric[2]:.3f}')if valid_iter is not None:measures += f', valid acc {valid_acc:.3f}'print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'f' examples/sec on {str(devices)}')

1.7. 训练模型并保存模型参数

通过对超参数的不断调整,获得满意的模型后保存

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()dummy_input = torch.zeros((batch_size, 3, 32, 32))  # 虚拟的输入数据
net.forward(dummy_input)  # 初始化模型参数train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,lr_decay)#保存在notebook中
import os
model_path = '/kaggle/working/model.pth'
torch.save(net.state_dict(), model_path)
print(f"Model saved to {model_path}")#形成一个下载链接
from IPython.display import FileLink
FileLink(r'model.pth')"""
当我们确定了最终的超参数设置后,我们可以使用所有标记的数据重新训练模型,并使用测试集来评估其性能。
"""net, preds = get_net(), []dummy_input = torch.zeros((batch_size, 3, 32, 32))  # 虚拟的输入数据
net.forward(dummy_input)  # 初始化模型参数train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,lr_decay)try:for X, _ in test_iter:y_hat = net(X.to(devices[0]))preds.extend(y_hat.argmax(dim=1).type(torch.int32).cpu().numpy())sorted_ids = list(range(1, len(test_ds) + 1))sorted_ids.sort(key=lambda x: str(x))df = pd.DataFrame({'id': sorted_ids, 'label': preds})df['label'] = df['label'].apply(lambda x: train_valid_ds.classes[x])df.to_csv('submission.csv', index=False)
except Exception as e:print(f"识别过程中出现错误{e}")#形成一个下载链接
from IPython.display import FileLink
FileLink(r'model.pth')

在这里插入图片描述

在这里插入图片描述

二、生成一个桌面小程序

之前也学习了一些有关pyqt的知识,试着将模型部署到桌面小程序中,起一个交互式的作用

2.1. 使用QT设计师设计界面

在这里插入图片描述
保存为ui文件,再转为py文件,具体方法请看:

python GUI编程——PyQt学习一

2.2. 代码实现

import sys
from PyQt6.QtWidgets import (QApplication, QDialog, QFileDialog,QMessageBox,QGraphicsScene,QGraphicsPixmapItem)
from PyQt6.QtGui import QPixmap
import CIFAR10_class
from CIFAR10_pred import predict_
from PIL import Imageclass CIFAR10_classApp(QDialog, CIFAR10_class.Ui_Dialog):def __init__(self):super().__init__()self.setupUi(self)self.show()self.pushButton_input.clicked.connect(self.input_images)self.pushButton_run.clicked.connect(self.run_model)# 创建标签部件self.graphicsView_input.setScene(QGraphicsScene(self))  # 创建场景对象并设置为graphicsView_input的场景def input_images(self):try:global fnameimgName, imgType = QFileDialog.getOpenFileName(self, "导入图片", "", "*.jpg;;*.png;;All Files(*)")pixmap = QPixmap(imgName).scaled(self.graphicsView_input.width(), self.graphicsView_input.height())pixmap_item = QGraphicsPixmapItem(pixmap)scene = self.graphicsView_input.scene()  # 获取graphicsView_input的场景scene.clear()  # 清空场景scene.addItem(pixmap_item)  # 添加图像fname = imgName# 显示导入成功的消息框QMessageBox.information(self, "信息提示", "导入成功")except Exception as e:QMessageBox.critical(self, "错误提示", f"识别过程中出现错误:{str(e)}")def run_model(self):global fnamefile_name = str(fname)img = Image.open(file_name)try:a, b = predict_(img)self.plainTextEdit_result.setPlainText(a)self.plainTextEdit_pred.setPlainText(str(b))QMessageBox.information(self, "信息提示", "识别成功")except Exception as e:QMessageBox.critical(self, "错误提示", f"识别过程中出现错误:{str(e)}")if __name__ == "__main__":app = QApplication(sys.argv)window = CIFAR10_classApp()sys.exit(app.exec())

对照片进行分类的预测

import torch
import torchvision.transforms as transforms
from d2l import torch as d2ldef predict_(img):"""定义了数据转换的操作。通过transforms.ToTensor()将图像转换为张量,transforms.Normalize()对图像进行归一化处理"""data_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])img = data_transform(img) #将输入图像应用数据转换操作img = torch.unsqueeze(img, dim=0) #在第0维度上添加一个维度,用于适配网络输入num_classes = 10model = d2l.resnet18(num_classes, 3)model_weight_pth = "model.pth"# model.load_state_dict(torch.load(model_weight_pth)) #指定了模型权重文件路径,并加载权重到模型中# 使用torch.load加载模型,同时将模型映射到CPU上model.load_state_dict(torch.load(model_weight_pth, map_location=torch.device('cpu')))model.eval() #将模型设置为评估模式,即关闭Dropout和Batch Normalization的随机性classes = {'0': '飞机', '1': '汽车', '2': '鸟', '3': '猫', '4': '鹿', '5': '狗', '6': '青蛙', '7': '马', '8': '船', '9': '卡车'}#将输入图像输入模型中进行推理with torch.no_grad():output = torch.squeeze(model(img))print(output)predict = torch.softmax(output, dim=0)predict_cla = torch.argmax(predict).numpy()return classes[str(predict_cla)], round(predict[predict_cla].item(),5)

在这里插入图片描述

额外:从网上找一张图片来试试

因为这个模型使用低像素的图片集训练而来,所以对高像素的照片的分类效果不是很好。所以训练模型的时候,如果想预测高像素的图片,建议使用高像素的训练数据来训练模型,以获得更好的预测性能。
在这里插入图片描述


总结

本章主要是对一个常见的图像数据集:CIFAR-10,用Resnet18模型来进行图像分类,然后形成一个桌面小程序用来更好的交互和展示。其中最重要的还是模型的建立,通过对不同模型的测试以及超参数的调整来找到”最优解“。

明日复明日,明日何其多,我生待明日,万事成蹉跎。

–2023-10-24 进阶篇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/119472.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Unity程序技巧】异步保险箱管理器

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

华为eNSP配置专题-路由策略的配置

文章目录 华为eNSP配置专题-路由策略的配置0、概要介绍1、前置环境1.1、宿主机1.2、eNSP模拟器 2、基本环境搭建2.1、终端构成和连接2.2、终端的基本配置 3、配置路由策略3.1、目标3.2、配置路由策略 华为eNSP配置专题-路由策略的配置 0、概要介绍 路由策略就是通过一系列工具…

【云原生】portainer管理多个独立docker服务器

目录 一、portainer简介 二、安装Portainer 1.1 内网环境下&#xff1a; 1.1.1 方式1&#xff1a;命令行运行 1.1.2 方式2&#xff1a;通过compose-file来启动 2.1 配置本地主机&#xff08;node-1&#xff09; 3.1 配置其他主机&#xff08;被node-1管理的节点服务器&…

c++类和对象(1)

目录 目录&#xff1a; 1.类的定义 1.1:类的语法及相关概念 1.2:类的两种定义方式 1.3:类的成员变量名命名规范 2.类的访问限定符 2.1:三种访问限定符关键字引入 2.2:访问限定符的语法说明 2.3:c中struct与class的区别(面试常考) 3.类的作用域 4.类的实例化 5.类对象 5.1:类对…

uniapp实现webview页面关闭功能

实现思路&#xff1a; 1.关闭按钮是使用原生button添加的close属性。&#xff08;见page.json页面&#xff09; 2.监听关闭按钮的方法。&#xff08;onNavigationBarButtonTap&#xff09; 3.写实现关闭webview所有页面的逻辑。 废话不多说&#xff0c;直接上代码 1.page.…

《GB/T 8566-2022/ISO/IEC/IEEE:系统与软件工程生存周期过程》国家标准解读,附下载地址

关于企业架构、软件工程等相关内容&#xff0c;基本在行业内工作一段时间都能解释出各自的理解&#xff0c;网络资料更是知识爆炸&#xff0c;看似哪一种都对&#xff0c;其实相对都是个人理解&#xff0c;算不上严谨。 上周工作中涉及架构的企业标准编制审查&#xff0c;对严…

网工内推 | 国企,解决方案工程师,最高30k,有软考证书优先

01 中电信数智科技有限公司海南分公司 招聘岗位&#xff1a;解决方案经理&#xff08;ICT&#xff09; 职责描述&#xff1a; 1、负责调动前后端资源做好全省ICT业务的售前支撑服务工作。 2、根据实际项目需求&#xff0c;主动协同客户渠道开展ICT项目商机挖掘&#xff0c;促进…

用友U8SMSProxy -SQL注入漏洞

0x01 漏洞介绍 用友GRP-U8 R10政务管理软件是由用友政务公司基于云技术所推出的第十代政务产品。这款产品继承了用友R9、R9i、U8等行政事业版产品的各项优点&#xff0c;并融合了全国广大用户的最佳实践应用。它旨在为政府财政部门、社保部门、卫生部门、教育部门、民政部门、党…

【uniapp+云函数调用】人脸识别,实人认证,适用于app,具体思路解析,已实现

2023.10.8 需求: uniapp开发的app项目中使用人脸识别 app项目都是第一次搞,更别提人脸识别了。目前已有的就是Dcloud账号已申请,实现需求的时间没那么紧迫 此篇会详细记录从0到1的过程 2023.10.24 今天开始探究实现的过程 可能会记录的有些冗余 效果图如下: uniapp开发指南…

整个自动驾驶小车001:概述

材料&#xff1a; 1&#xff0c;树梅派4b&#xff0c;作为主控&#xff0c;这个东西有linux系统&#xff0c;方便 2&#xff0c;HC-S104超声波模块&#xff0c;我有多个&#xff0c;不少于4个&#xff0c;我可以前后左右四个方向都搞一个 3&#xff0c;l298n模块&#xff0c;…

【Linux】第三站:Linux基本指令(二)

文章目录 一、通配符 *二、man指令三、cp指令1.先给一个文件里面写入数据2. cp指令拷贝普通文件3.cp指令拷贝文件目录4.常用的选项总结 四、mv指令1.mv命令简介2.使用 五、一些插曲1.一些注意事项2.指令的本质3.再谈输出重定向4.追加重定向5.输入重定向 六、cat指令七、more指令…

springboot配置redis、Spring cache

1.Jedis库 依赖库 <dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>5.0.2</version> </dependency>使用案例&#xff1a; Testpublic void jedis(){Jedis jedis new Jedis("127…

光流法动目标检测

目录 前言 一、效果展示 二、光流法介绍 三、代码展示 总结 前言 动目标检测是计算机视觉领域的一个热门研究方向。传统的方法主要基于背景建模&#xff0c;但这些方法对于光照变化、遮挡和噪声敏感。因此&#xff0c;研究人员一直在寻找更加鲁棒和有效的技术来解决这一问题。…

C# 串口通信简单示例

C# 简单串口通信示例 串口通信示例代码 串口通信 C# 串口通信主要操作&#xff1a; 命名空间&#xff1a;using System.IO.Ports;获取端口&#xff1a;string[] ports System.IO.Ports.SerialPort.GetPortNames();设置端口名&#xff1a;serialPort1.PortName “COM1”; //…

vue3中常用的新组件

一、Fragment vue2中&#xff0c;组件必须有一个根标签 vue3中&#xff0c;组件可以没有根标签&#xff0c;内部会将多个标签包含在一个Fragment虚拟元素中。 优点&#xff1a;减少标签层级。 二、Teleport&#xff08;传送门&#xff09; 作用&#xff1a;将组件的 html …

渗透测试tomcat错误信息泄露解决办法

解决方法&#xff1a; 1、使用tomcat8.5.16&#xff0c;会重定向非法url到登录url 2、配置server.xml&#xff0c;加上 <Valve className"org.apache.catalina.valves.ErrorReportValve" showReport"false" showServerInfo"false" />配置…

C++ 模板和泛型编程详解

C中的模板和泛型编程是非常重要的概念。模板是一种将数据类型作为参数的通用程序设计方法。它们允许开发人员编写可以处理各种数据类型的代码&#xff0c;而无需为每种数据类型编写不同的代码。下面介绍了一些关于C中模板和泛型编程的重要知识点 模板的定义 模板是一种通用程序…

opencalib中lidar2camera安装记录

目录 一、opencalib安装 二、lidar2camera的安装 三、测试运行 四、出现过的问题 一、opencalib安装 代码地址&#xff1a;https://github.com/PJLab-ADG/SensorsCalibration/blob/master/README.md # pull docker image sudo docker pull scllovewkf/opencalib:v1 # Aft…

【计算机网络】HTTP 协议的基本格式以及 fiddler 的用法

HTTP协议的基本格式如下&#xff1a; 1.请求行&#xff1a; 包括请求THHP协议的版本、请求URI&#xff08;资源路径&#xff09;和HTTP方法&#xff08;如GET、POST、PUT、DELETE等&#xff09; GET/example.html HTTP/1.1 GET表示请求方法&#xff0c;/example.html表示请求的…

大语言模型(LLM)综述(三):大语言模型预训练的进展

A Survey of Large Language Models 前言4. PRE-TRAINING4.1数据收集4.1.1 数据源4.1.2 数据预处理4.1.3 预训练数据对LLM的影响 4.2 模型架构4.2.1 典型架构4.2.2 详细配置4.2.3 预训练任务4.2.4 解码策略4.2.5 总结和讨论 4.3 模型训练4.3.1 优化设置4.3.2 可扩展的训练技术 …