Fisher辨别分析

  • 问题要求

在UCI数据集上的Iris和Sonar数据上验证算法的有效性。训练和测试样本有三种方式(三选一)进行划分:

(一) 将数据随机分训练和测试,多次平均求结果

(二)K折交叉验证

(三)留1法

针对不同维数,画出曲线图。

  • 问题分析

(一)数据集

1.Iris数据集是常用的分类实验数据集,由Fisher收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

2.在Sonar数据集中有两类(字母“R”(岩石)和“M”(矿井)),分别有97个和111个数据,每个数据有60维的特征。这个分类任务是为了判断声纳的回传信号是来自金属圆柱还是不规则的圆柱形石头。

(二)Fisher线性判别分析

1.方法总括

Fisher线性判别方法可概括为把 d 维空间的样本投影到一条直线上,形成一维空间,即通过降维去解决两分类问题。如何根据实际数据找到一条最好的、最易于分类的投影方向,是 Fisher 判别方法所要解决的基本问题。

2. 求解过程

(1)核心思想

假设有一集合 D 包含 m 个 n 维样本{x1, x2, …, xm},第一类样本集合记为 D1,规模为 N1,第二类样本集合记为 D2,规模为 N2。若对 xi 的分量做线性组合可得标量:yi = wTxi(i=1,2,…,m)这样便得到 m 个一维样本 yi 组成的集合, 并可分为两个子集 D’1 和 D’2。计算阈值 yo,当 yi>yo 时判断 xi 属于第一类, 当 yi<yo 时判断 xi 属于第二类,当 yi=yo 时 xi 可判给任何一类或者拒收。(2)具体推导

相关书籍或网站上都有具体推导过程,这里不再赘述。

  (3)样本划分

采用留1法划分训练集和数据集,该方法是K折法的一种极端情况。

在K折法中,将全部训练集 S分成 k个不相交的子集,假设 S中的训练样例个数为 N,那么每一个子集有 N/k 个训练样例,相应的子集称作 {s1,s2,…,sk}。每次从分好的子集中里面,拿出一个作为测试集,其它k-1个作为训练集,根据训练训练出模型或者假设函数。然后把这个模型放到测试集上,得到分类率,计算k次求得的分类率的平均值,作为该模型或者假设函数的真实分类率。

当取K的值为样本个数N时,即将每一个样本作为测试样本,其它N-1个样本作为训练样本。这样得到N个分类器,N个测试结果。用这N个结果的平均值来衡量模型的性能,这就是留1法。在UCI数据集中,由于数据个数较少,采用留一法可以使样本利用率最高。

  • 仿真结果
  • 1.Iris数据集

由于Fisher分类器只能将样本划分为两类,则将三份数据两两分类并采取留1法进行划分。由仿真效果可看出划分界限十分明显,Fisher算法分类的表现较好。

  • 2.Sonar数据集

由仿真结果可看出,维度在30维之前时,纬度越高,Fisher判别的准确率越高;维度在30维之后,Fisher判别的准确率趋于稳定,在75%左右。

代码如下:

(1)iris数据集

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
print(mpl.get_backend())Iris = pd.read_csv('iris.data', header=None, sep=',')def Fisher(X1, X2, t):# 各类样本均值向量m1 = np.mean(X1, axis=0)m2 = np.mean(X2, axis=0)m1 = m1.reshape(4, 1)m2 = m2.reshape(4, 1)m = m1 - m2# 样本类内离散度矩阵s1 = np.zeros((4, 4))   # s1,s2此时均为数组s2 = np.zeros((4, 4))if t == 0:  # 第一种情况for i in range(0, 49):s1 += (X1[i].reshape(4, 1) - m1).dot((X1[i].reshape(4, 1) - m1).T)for i in range(0, 50):s2 += (X2[i].reshape(4, 1) - m2).dot((X2[i].reshape(4, 1) - m2).T)if t == 1:  # 第二种情况for i in range(0, 50):s1 += (X1[i].reshape(4, 1) - m1).dot((X1[i].reshape(4, 1) - m1).T)for i in range(0, 49):s2 += (X2[i].reshape(4, 1) - m2).dot((X2[i].reshape(4, 1) - m2).T)# 总类内离散度矩阵sw = s1 + s2sw = np.mat(sw, dtype='float')m = np.mat(m, dtype='float')# 最佳投影方向w = np.linalg.inv(sw).dot(m)# 在投影后的一维空间求两类的均值m1 = np.mat(m1, dtype='float')m2 = np.mat(m2, dtype='float')m_1 = (w.T).dot(m1)m_2 = (w.T).dot(m2)# 计算分类阈值w0w0 = -0.5 * (m_1 + m_2)return w, w0def Classify(X,w,w0):y = (w.T).dot(X) + w0return y#数据预处理
Iris = Iris.iloc[0:150,0:4]
iris = np.mat(Iris)Accuracy = 0iris1 = iris[0:50, 0:4]
iris2 = iris[50:100, 0:4]
iris3 = iris[100:150, 0:4]G121 = np.ones(50)
G122 = np.ones(50)
G131 = np.zeros(50)
G132 = np.zeros(50)
G231 = np.zeros(50)
G232 = np.zeros(50)# 留一法验证准确性
# 第一类和第二类的线性判别
count = 0
for i in range(100):if i <= 49:test = iris1[i]test = test.reshape(4, 1)train = np.delete(iris1, i, axis=0)w, w0 = Fisher(train, iris2, 0)if (Classify(test, w, w0)) >= 0:count += 1G121[i] = Classify(test, w, w0)else:test = iris2[i-50]test = test.reshape(4, 1)train = np.delete(iris2, i-50, axis=0)w, w0 = Fisher(iris1, train, 1)if (Classify(test, w, w0)) < 0:count += 1G122[i-50] = Classify(test, w, w0)
Accuracy12 = count/100
print("第一类和二类的分类准确率为:%.3f"%(Accuracy12))# 第二类和第三类的线性判别
count = 0
for i in range(100):if i <= 49:test = iris2[i]test = test.reshape(4, 1)train = np.delete(iris2, i, axis=0)w, w0 = Fisher(train, iris3, 0)if (Classify(test, w, w0)) >= 0:count += 1G231[i] = Classify(test, w, w0)else:test = iris3[i-50]test = test.reshape(4, 1)train = np.delete(iris3, i-50, axis=0)w, w0 = Fisher(iris2, train, 1)if (Classify(test, w, w0)) < 0:count += 1G232[i-50] = Classify(test, w, w0)
Accuracy23 = count/100
print("第二类和第三类的分类准确率为:%.3f"%(Accuracy23))# 第一类和第三类的线性判别
count = 0
for i in range(100):if i <= 49:test = iris1[i]test = test.reshape(4, 1)train = np.delete(iris1, i, axis=0)w, w0 = Fisher(train, iris3, 0)if (Classify(test, w, w0)) >= 0:count += 1G131[i] = Classify(test, w, w0)else:test = iris3[i-50]test = test.reshape(4, 1)train = np.delete(iris3, i-50, axis=0)w,w0 = Fisher(iris1, train, 1)if (Classify(test, w, w0)) < 0:count += 1G132[i-50] = Classify(test, w, w0)
Accuracy13 = count/100
print("第一类和第三类的分类准确率为:%.3f"%(Accuracy13))# 作图
y1 = np.zeros(50)
y2 = np.zeros(50)
plt.figure(1)
plt.ylim((-0.5, 0.5))# 画散点图
plt.scatter(G121, y1, color='red', marker='.')
plt.scatter(G122, y2, color='blue', marker='.')
plt.xlabel('Class:1-2')
plt.show()plt.figure(2)
plt.ylim((-0.5, 0.5))
# 画散点图
plt.scatter(G231, y1, c='red',  marker='.')
plt.scatter(G232, y2, c='blue', marker='.')
plt.xlabel('Class:2-3')
plt.show()plt.figure(3)
plt.ylim((-0.5, 0.5))
# 画散点图
plt.scatter(G131, y1, c='red', marker='.')
plt.scatter(G132, y2, c='blue', marker='.')
plt.xlabel('Class:1-3')
plt.show()

(2)Sonar数据集

import numpy
import pandas as pd
import numpy as np
import matplotlib.pyplot as pltpath=r'sonar.all-data.txt'
df = pd.read_csv(path, header=None, sep=',')def Fisher(X1, X2, n, t):# 各类样本均值向量m1 = np.mean(X1, axis=0)m2 = np.mean(X2, axis=0)m1 = m1.reshape(n, 1)m2 = m2.reshape(n, 1)m = m1 - m2# 样本类内离散度矩阵s1 = np.zeros((n, n))   # s1,s2此时均为数组s2 = np.zeros((n, n))if t == 0:  # 第一种情况for i in range(0, 96):s1 += (X1[i].reshape(n, 1) - m1).dot((X1[i].reshape(n, 1) - m1).T)for i in range(0, 111):s2 += (X2[i].reshape(n, 1) - m2).dot((X2[i].reshape(n, 1) - m2).T)if t == 1:  # 第二种情况for i in range(0, 97):s1 += (X1[i].reshape(n, 1) - m1).dot((X1[i].reshape(n, 1) - m1).T)for i in range(0, 110):s2 += (X2[i].reshape(n, 1) - m2).dot((X2[i].reshape(n, 1) - m2).T)# 总类内离散度矩阵sw = s1 + s2sw = np.mat(sw, dtype='float')m = numpy.mat(m, dtype='float')# 最佳投影方向w = np.linalg.inv(sw).dot(m)# 在投影后的一维空间求两类的均值m_1 = (w.T).dot(m1)m_2 = (w.T).dot(m2)# 计算分类阈值w0w0 = -0.5 * (m_1 + m_2)return w, w0def Classify(X,w,w0):y = (w.T).dot(X) + w0return y# 数据预处理
Sonar = df.iloc[0:208,0:60]
sonar = np.mat(Sonar)# 分十次计算准确率
Accuracy = np.zeros(60)
accuracy_ = np.zeros(10)
for n in range(1,61):for t in range(10):sonar_random = (np.random.permutation(sonar.T)).T   # 对原sonar数据进行每列打乱sonar1 = sonar_random[0:97, 0:n]sonar2 = sonar_random[97:208, 0:n]count = 0# 留一法验证准确性for i in range(208):    # 取每一维度进行测试if i <= 96:test = sonar1[i]test = test.reshape(n, 1)train = np.delete(sonar1, i, axis=0)w, w0 = Fisher(train, sonar2, n, 0)if (Classify(test, w, w0)) >= 0:count += 1else:test = sonar2[i-97]test = test.reshape(n, 1)train = np.delete(sonar2, i-97, axis=0)w, w0 = Fisher(sonar1, train, n, 1)if (Classify(test, w, w0)) < 0:count += 1accuracy_[t] = count / 208for k in range(10):Accuracy[n - 1] += accuracy_[k]Accuracy[n - 1] = Accuracy[n - 1] / 10print("数据为%d维时,准确率为:%.3f" % (n, Accuracy[n - 1]))# 作图
x = np.arange(1, 61, 1)
plt.xlabel('dimension')
plt.ylabel('Accuracy')
plt.ylim((0.5, 0.8))            # y坐标的范围
plt.plot(x, Accuracy, 'b')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/101624.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【苍穹外卖 | 项目日记】第三天

前言&#xff1a; 今天状态不错&#xff0c;kuku就是写接口&#xff0c;很舒服 目录 前言&#xff1a; 今日完结任务&#xff1a; 今日收获&#xff1a; 杂项知识点&#xff1a; 总结&#xff1a; 今日完结任务&#xff1a; 实现了新增菜品接口实现了菜品分页查询接口实现…

如何基于先进视频技术,构建互联网视频监控安全管理平台解决方案

一、建设思路 依托互联网&#xff0c;建设一朵云&#xff0c;实现各类二三类视频资源统一接入&#xff0c;实现天网最后100米、10米、1米的全域覆盖。 依托人工智能与互联网技术&#xff0c;拓展视频资源在政府、社会面等多领域的全面应用&#xff1b;建设与运营模式并存&…

软件测试工具有什么作用?有哪些好用的测试工具推荐?

软件测试工具是现代软件测试中不可或缺的重要组成部分&#xff0c;指的是一系列在软件开发过程中使用的工具&#xff0c;用于帮助测试人员进行测试活动&#xff0c;提高测试效率&#xff0c;减少测试成本。选择并使用合适的软件测试工具&#xff0c;可提高软件质量和效率。 一…

WebRTC 系列(四、多人通话,H5、Android、iOS)

WebRTC 系列&#xff08;三、点对点通话&#xff0c;H5、Android、iOS&#xff09; 上一篇博客中&#xff0c;我们已经实现了点对点通话&#xff0c;即一对一通话&#xff0c;这一次就接着实现多人通话。多人通话的实现方式呢也有好几种方案&#xff0c;这里我简单介绍两种方案…

应用在SMPS中的GaN/氮化镓

开关模式电源&#xff08;Switch Mode Power Supply&#xff0c;简称SMPS&#xff09;&#xff0c;又称交换式电源、开关变换器&#xff0c;是一种高频化电能转换装置&#xff0c;是电源供应器的一种。其功能是将一个位准的电压&#xff0c;透过不同形式的架构转换为用户端所需…

【2023】M1/M2 Mac 导入Flac音频到Pr的终极解决方案

介绍 原作者链接&#xff1a;https://github.com/fnordware/AdobeOgg 很早之前就发现了这个插件&#xff0c;超级好用&#xff0c;在windows上完全没有问题&#xff0c;可惜移植到mac就不行了&#xff08;然后我给作者发了一个Issue&#xff0c;后来就有大佬把m1的编译出来了&…

②. GPT错误:图片尺寸写入excel权限错误

꧂问题最初 ꧁ input输入图片路径 print图片尺寸 大小 长宽高 有颜色占比>0.001的按照大小排序将打印信息存储excel表格文件名 表格路径 图片大小 尺寸 颜色类型 占比信息input输入的是文件就处理文件 是文件夹&#x1f4c1;就处理文件。路径下的图片 1. 是处理本路径图片 …

狄拉克函数及其性质

狄拉克函数及其性质 狄拉克函数 近似处理 逼近近似 积分近似 狄拉克函数的性质 狄拉克函数的Hermite展开

构建图像金字塔:探索 OpenCV 的尺度变换技术

构建图像金字塔&#xff1a;探索 OpenCV 的尺度变换技术 引言什么是图像金字塔&#xff1f;为什么需要图像金字塔&#xff1f;构建高斯金字塔构建拉普拉斯金字塔图像金字塔的应用示例&#xff1a;在不同尺度下检测图像中的边缘 结论 引言 在计算机视觉领域&#xff0c;图像金字…

ROS-PX4仿真笔记_1

offbord模式测试 rosrun offboard_pkg position stablelize模式 lqr控制器实验 roslaunch px4 fast_test.launch 无人机起飞1.5-2m sh mybot_gazebo.sh先点击mode&#xff0c;再点击cmd&#xff0c;才能打开offbord模式 minijerk实验 roslaunch px4 fast_test.launch sh …

电子科大软件系统架构设计——系统架构设计

文章目录 系统架构设计系统设计概述系统设计定义系统设计过程系统设计活动系统设计基本方法系统设计原则系统设计方法分类面向对象系统分析与设计建模过程 系统架构基础系统架构定义系统架构设计定义系统架构作用系统架构类型系统总体架构系统拓扑架构系统拓扑架构类型系统拓扑…

读书笔记:多Transformer的双向编码器表示法(Bert)-4

多Transformer的双向编码器表示法 Bidirectional Encoder Representations from Transformers&#xff0c;即Bert&#xff1b; 第二部分 探索BERT变体 从本章开始的诸多内容&#xff0c;以理解为目标&#xff0c;着重关注对音频相关的支持&#xff08;如果有的话&#xff09;…

Docker基础操作容器

启动容器有两种方式&#xff0c;一种是基于镜像新建一个容器并启动&#xff0c;另外一个是将在终止状态&#xff08;exited&#xff09;的容器重新启动。 因为 Docker 的容器实在太轻量级了&#xff0c;很多时候用户都是随时删除和新创建容器。 新建并启动 所需要的命令主要…

使用tailwindcss来构建以及引入外部组件

使用tailwindcss来构建以及引入外部组件 使用tailwindcss来构建以及引入外部组件 前言构建组件 核心思想可行方案不可行方案 可行方案详解 custom css selector Functions & Directivesadd prefixadd scoped不打包 构建demo链接相关issues 前言 我们在日常的开发中&am…

1、AM64xx的SDK重新编译lib文件

当需要修改AM64XX的SDK提供的源文件时&#xff0c;如果要在自己的工程使用&#xff0c;需要重新编译出lib&#xff0c;下面是编译lib的具体方法&#xff1a; 因为没有ccs编译出lib的工程&#xff0c;所以需要再命令行模式下生成lib文件 1、配置好gmake环境 如果安装了ccs&am…

隔离上网,安全上网

SDC沙盒数据防泄密系统&#xff08;安全上网&#xff0c;隔离上网&#xff09; •深信达SDC沙盒数据防泄密系统&#xff0c;是专门针对敏感数据进行防泄密保护的系统&#xff0c;根据隔离上网和安全上网的原则实现数据的代码级保护&#xff0c;不会影响工作效率&#xff0c;不…

SP605官方开发板不能扫到链的问题

很早之前的板子&#xff0c;近些天需要重新搞FPGA&#xff0c;所以又拿出来&#xff0c;应该以前都是在win7下开发&#xff0c;现在都win10了&#xff0c;vivado都不支持sp6&#xff0c;所以先得下载一个14.7版本&#xff0c;但是出现了新的问题&#xff0c;就是不能扫到链。 …

本文整理了Debian 11在国内的几个软件源。

1&#xff0e;使用说明 一般情况下&#xff0c;将/etc/apt/sources.list文件中Debian默认的软件仓库地址和安全更新仓库地址修改为国内的镜像地址即可&#xff0c;比如将deb.debian.org和security.debian.org改为mirrors.xxx.com&#xff0c;并使用https访问&#xff0c;可使用…

sqli-lab靶场通关

文章目录 less-1less-2less-3less-4less-5less-6less-7less-8less-9less-10 less-1 1、提示输入参数id&#xff0c;且值为数字&#xff1b; 2、判断是否存在注入点 id1报错&#xff0c;说明存在 SQL注入漏洞。 3、判断字符型还是数字型 id1 and 11 --id1 and 12 --id1&quo…

智能工业通信解决方案!钡铼BL124实现Modbus转Ethernet/IP互联!

钡铼技术BL124 Modbus转Ethernet/IP协议网关是一款专为工业自动化领域而设计的先进设备。它提供了可靠的通信解决方案&#xff0c;能够将Modbus通信协议与Ethernet/IP通信协议进行高效转换&#xff0c;实现不同类型设备之间的无缝集成和通信。 添加图片注释&#xff0c;不超过 …