2024新算法角蜥优化算法(HLOA)和经典灰狼优化器(GWO)进行无人机三维路径规划设计实验

简介:

2024新算法角蜥优化算法(HLOA)和经典灰狼优化器(GWO)进行无人机三维路径规划设计实验。

    无人机三维路径规划的重要意义在于确保飞行安全、优化飞行路线以节省时间和能源消耗,并使无人机能够适应复杂环境,实现特定任务。群体智能优化算法在无人机三维路径规划中扮演关键角色,其全局搜索能力允许同时考虑多个解决方案,避障优化确保路径安全,自适应性适应不同飞行任务需求,并行搜索加快最优解寻找速度。

    灰狼优化器(GWO)作为非常经典实用的群智能算法,在这里我们将其与2024年最新提出的角蜥优化算法(HLOA)进行无人机三维路径规划比较,运行结果包括最优路径和收敛曲线的比较。并附带代码,供大家学习参考!

实验结果如下:

部分主函数代码如下:

clc;
clear;
close all;
%% 创建地图
%地图的大小200*200
MapSizeX = 200 ; 
MapSizeY = 200;
%% 地形地图创建,地图详细参数,请去MapValueFunction.m里面设置
x = 1:1:MapSizeX;
y = 1:1:MapSizeY;
for i = 1:MapSizeXfor j = 1:MapSizeYMap(i,j) = MapValueFunction(i,j);end
end
global NodesNumber
global startPoint
global endPoint
global ThreatAreaPostion
global ThreatAreaRadius%% 威胁区域绘制
%威胁区域中心坐标
ThreatAreaPostion = [50,140];
%威胁区域半径
ThreatAreaRadius = 30;
%将威胁区域叠加到图上
figure
mesh(Map);
hold on;
for i= 1:size(ThreatAreaRadius)[X,Y,Z] = cylinder(ThreatAreaRadius(i),50);X = X + ThreatAreaPostion(i,1);Y = Y + ThreatAreaPostion(i,2);Z(2,:) = Z(2,:) + 50;%威胁区域高度mesh(X,Y,Z)
end
%% 设置起始点
startPoint = [0,0,20];
endPoint = [200,200,20];
plot3(startPoint(1),startPoint(2),startPoint(3),'ro');
text(startPoint(1),startPoint(2),startPoint(3),'起点','Color','k','FontSize',15)
plot3(endPoint(1),endPoint(2),endPoint(3),'r*');
text(endPoint(1),endPoint(2),endPoint(3),'终点','Color','k','FontSize',15)
title('地图信息')
%% 灰狼优化参数设置
NodesNumber = 2;%起点与终点之间节点的个数
dim = 2*NodesNumber; %维度,一组坐标点为[x,y,z]3个值,,其中X等间隔分布,所以总的数据个数为2*NodesNumber
lb = [20.*ones(1,NodesNumber),0.*ones(1,NodesNumber)];%x,y,z的下限[20,20,0]
ub = [180.*ones(1,NodesNumber),50.*ones(1,NodesNumber)];%x,y,z的上限[200,200,50]
fobj = @(x)fun(x,NodesNumber,startPoint,endPoint,ThreatAreaPostion,ThreatAreaRadius);%适应度函数
SearchAgents_no=70; % 种群数量
Max_iteration=50; % 设定最大迭代次数[Best_pos_GWO,Best_score_GWO,GWO_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
[Best_pos_HLOA,Best_score_HLOA,HLOA_curve]=HLOA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
%根据寻优获得的节点,获取插值后的路径
[X_seq_HLOA,Y_seq_HLOA,Z_seq_HLOA,x_seq_HLOA,y_seq_HLOA,z_seq_HLOA] = GetThePathLine(Best_pos_HLOA,NodesNumber,startPoint,endPoint);
[X_seq_GWO,Y_seq_GWO,Z_seq_GWO,x_seq_GWO,y_seq_GWO,z_seq_GWO] = GetThePathLine(Best_pos_GWO,NodesNumber,startPoint,endPoint);

代码获取点击:

点击获取代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/827634.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手把手教你搭建鲜花团购小程序

随着互联网的快速发展,线上小程序商城已经成为了一种流行的电商模式。对于花店来说,开发线上小程序商城不仅可以扩大销售渠道,提高销售效率,还可以增加客户粘性,提升品牌形象。下面就以花店为例,教你怎么开…

OceanBase V4.2特性解析:用 Show Trace 快速定位数据库性能瓶颈

在数据库日常运维中,当遇到慢SQL问题时,若无法迅速查明原因,将极大地影响用户的使用感受,甚至可能引发业务或服务的中断。相较于单机数据库,分布式数据库系统因其涉及多个节点和多组件的协同工作,集群规模可…

DSP开发实战教程--EPWM模块的影子寄存器详细讲解原理和代码实例

EPWM模块影子寄存器的原理 在TI(Texas Instruments)的DSP28335中,EPWM(Enhanced Pulse Width Modulator)模块提供了高精度、高灵活性的PWM信号生成功能。为了能在不影响当前PWM波形输出的情况下预装载新的PWM参数(如周期、占空比等),EPWM模块引入了影子寄存器的概念。 …

STM32 ADC转换器

一、ADC简介 ADC(Analog-Digital Converter,模拟-数字转换器),可以将引脚上连续变化的模拟量转换为内存中存储的数字量,建立模拟电路到数字电路的桥梁 模拟量:时间和幅值均连续的信号,例如&…

sklearn 笔记 metrics

1 分类 1.1 accuracy_score 分类准确率得分 在多标签分类中,此函数计算子集准确率:y_pred的标签集必须与 y_true 中的相应标签集完全匹配。 1.1.1 参数 y_true真实(正确)标签y_pred由分类器返回的预测标签normalize 默认为 Tr…

LLama的激活函数SwiGLU 解释

目录 Swish激活函数 1. Swish函数公式 LLaMA模型中的激活函数 1. SwiGLU激活函数 2. SwiGLU激活函数的表达式 3. SwiGLU激活函数的优势 Swish激活函数 Swish是一种激活函数,其计算公式如下: 1. Swish函数公式 Swish(x) x * sigmoid(x) 其中&am…

概率图模型在机器学习中的应用:贝叶斯网络与马尔可夫随机场

🧑 作者简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

【重要】Heygen订阅指南和用法详解!让照片学说话?一张照片变演讲?Heygen订阅值得吗?

常见问题 Q:Heygen是什么?Heygen是什么玩意? A:Heygen是一款由AI视频工具,创作者只需要上传视频并选择要翻译的语言,该工具可实现自动翻译、调整音色、匹配嘴型。为了方便理解,笔者利用Heygen制作了一个AI视…

裤裤带你一起学C语言内存函数啦!

目录 1.memcpy的使用和模拟实现 2.memmove使用和模拟实现 3.memset函数的使用 4.memcmp函数的使用 内存函数在<string.h>库中&#xff0c;我们使用内存函数必须先引入<string.h>头文件 1.memcpy的使用和模拟实现 memcpy的函数原型如下&#xff1a; void * m…

Vue--》深入了解 VueUse 功能性工具集

今天博主为大家介绍一款实用性的插件名字叫做 VueUse &#xff0c;它是专门为 Vue.js 生态系统设计的功能性工具集合。其提供了许多可重用的功能函数&#xff0c;可以帮助开发者更轻松地构建 Vue.js 应用程序。其提供了大量的功能&#xff0c;包括状态管理、副作用管理、组合式…

【刷题】前缀和入门

送给大家一句话&#xff1a; 既然已经做出了选择&#xff0c;最好还是先假定自己是对的。焦虑未来和后悔过去&#xff0c;只经历一个就够了。 – 张寒寺 《不正常人类症候群》 ☆ミヾ(∇≦((ヾ(≧∇≦)〃))≧∇)ノ彡☆ ☆ミヾ(∇≦((ヾ(≧∇≦)〃))≧∇)ノ彡☆ ☆ミヾ(∇≦((ヾ…

react引入iconfont的svg图标

react引入iconfont的svg图标 本文目录 react引入iconfont的svg图标普通图标通过link引入css组件内引入css使用 svg图标通过script引入js组件内引入js使用 通过封装组件自定义封装组件中调用 通过antd封装使用 普通图标 通过link引入css <link rel"stylesheet" h…

基于springboot实现在线考试系统设计【项目源码+论文说明】计算机毕业设计

基于springboot实现在线考试管理系统演示 摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了基于JavaWeb技术的在线考试系统设计与实现的开发全过程。通过分析基于Java Web技术的在线考试系统设计与实现管理的不…

http 3.0 有哪些新特性

HTTP/3 是超文本传输协议&#xff08;HTTP&#xff09;的最新主要版本&#xff0c;其显著特点是放弃了传统的TCP作为传输层协议&#xff0c;转而采用基于UDP的QUIC&#xff08;Quick UDP Internet Connections&#xff09;协议。以下是HTTP/3利用QUIC实现高性能传输的关键特性&…

sketchup{su}安装错误1402

错误如图 解决方法如下 打开autoremove&#xff0c;点击扩展&#xff0c;输入1402&#xff0c;点击搜索 等待修复成功既可尝试重新安装su 软件每周六选择其他方式登录免费使用

微软github技术公开课(web开发、生成式AI、ML、数据科学、物联网)

一些微软在github上公开的课程整理&#xff1a; web开发基础入门 面向初学者的数据数据科学课程 https://microsoft.github.io/Data-Science-For-Beginners/#/ 面向初学者的AI入门课程 https://github.com/microsoft/ai-for-beginners 面向初学者的生成式AI课程 https://…

WordPress自动采集发布AutoPostPro汉化版插件

WP-AutoPostPro 是一款极为出色的WordPress自动采集发布插件&#xff0c;其显著优势在于能够从任何网站抓取内容并自动将其发布到你的WordPress网站上。它实现了对任何网页内容的自动采集和发布&#xff0c;整个采集过程完全自动化&#xff0c;无需手动操作。 项 目 地 址 &…

网络 (基础概念, OSI 七层模型, TCP/IP 五层模型)

网络互连 网络互连: 将多台计算机连接在一起, 完成数据共享 数据共享的本质是网络数据传输, 即计算机之间通过网络来传输数, 也叫做网络通信 根据网络互连的规模不同, 将网络划分为局域网和广域网 注意: 局域网和广域网是相对的概念 局域网LAN 又称内网, 局域网和局域网之间在没…

生成式AI在B端产品的应用分析

AI产品发展到现在&#xff0c;消费端的产品应用还受到比较大的限制&#xff1b;但是在B端&#xff0c;已经有了不错的表现。作者总结了AI产品在B端的几款应用&#xff0c;一起来看看表现如何。 生成式AI在B端产品的应用分析© 由 ZAKER 提供 随着今年生成式AI应用的大范围…

Python基础06-日期和时间的操作方法

在Python中处理日期和时间是编程中常见的需求&#xff0c;无论是安排任务、记录日志还是分析数据。本文将介绍如何在Python中获取当前日期和时间、创建特定日期和时间、格式化日期和时间、解析字符串中的日期和时间、使用时间差、比较日期和时间、从日期/时间中提取组件、处理时…