AI虽强,搜索引擎仍不可或缺

AI 领域正以前所未有的速度发展,大模型的发布变得愈发频繁,模型的规模也在持续扩大。如今,大模型的起点已经攀升至数十亿参数(数十 B,B 是 Billion 的简写,10 亿),其功能之广泛,令人惊叹。它们不仅能画画、撰写文章和制作PPT,还能编写代码,几乎无所不能。更令人欣喜的是,使用这些 AI 工具已经变得前所未有的简便,只需通过浏览器即可轻松访问,无需繁琐的部署过程。

随着模型的迭代升级,新的版本不断涌现,而旧的模型则慷慨地免费开放给大众使用。例如,ChatGPT 在推出 4.0 版本的同时,其 3.5 版本也大方地供大家免费使用,甚至无需注册。国内 AI 公司同样积极进取,如文心一言、通义千问、豆包等,都在竞相抢占市场,提供免费服务。

尽管我与AI的亲密接触只有短短的大半年时间,但我已经在工作中对 AI 产生了深深的依赖。如今,每当我遇到问题时,ChatGPT 3.5 成了我的首选助手。在很多时候,我甚至觉得 Google 这样的传统搜索引擎已经渐渐淡出我的视线。

然而, AI 并非万能。尽管它强大,但偶尔也会给出错误的答案,甚至有时会胡编乱造来搪塞。在这种情况下,我意识到搜索引擎仍然占据着不可替代的地位。有些问题,还是得靠 Google 这样的搜索引擎来解决。

最近准备在产品中加入划词翻译的功能,习惯性的问了一下 AI。

Q:Linux下 如何做到Windows下的那种划词翻译功能?

A: 要在 Linux 下实现类似 Windows 下的划词翻译功能,需要结合多个技术来实现,主要涉及到文本捕捉、翻译 API 的调用和界面显示等方面。下面是一种可能的实现方式:

  1. 文本捕捉:在 Linux 下,可以使用一些图形界面自动化工具来捕捉屏幕上的文本。例如,使用 SikuliX 或者 xautomation 工具来模拟用户在屏幕上划词选择文本的操作,并将选择的文本内容获取到。

  2. 翻译 API 的调用:选择一个适合的翻译服务提供商,例如百度翻译、谷歌翻译等,并获取其翻译 API 的接入凭证。然后,在你的应用程序中调用翻译 API,将捕捉到的文本发送给翻译 API,并获取翻译结果。

  3. 界面显示:将翻译结果显示在界面上,可以使用图形界面工具包如 GTK、Qt 等来设计和实现用户界面。在界面上显示原文和翻译结果,并提供相关的操作按钮或菜单来控制翻译功能。

  4. 实现方式:

  • 使用 Python 或其他编程语言编写程序,利用 Python 的图像处理库如 Pillow、pyautogui 等来捕捉屏幕上的文本。

  • 调用翻译 API 的 Python SDK 或者直接使用 HTTP 请求发送文本并获取翻译结果。

  • 使用 PyGTK、PyQt、Tkinter 等工具包来设计和实现用户界面,并将翻译结果显示在界面上。需要注意的是,在 Linux 下实现划词翻译功能可能比较复杂,需要涉及到图形界面自动化、API 调用、界面设计等多个方面。确保你对这些方面都有一定的了解和熟悉,并且有能力进行相应的开发和调试工作。

接下来问 SikuliX 和 xautomation 等的使用,发现越带越偏,给人的感觉在 Linux 下都没法做划词翻译。但想想也不科学啊,那么多词典都支持划词翻译,这肯定是一条行得通的路。

绝望之下,决定还是请教一下 Google。

bd98c78d755cebd57c29246293874659.png

一下子豁然开朗,第三个结果就是 GitHub 上的开源项目,还是用 QT 写的。

ee4ff92119b9c3d0207872707ec9f9b4.png

看项目介绍,特别满足我现在的需求。接着往下找,还有更加简便的实现文章介绍:

9cb27539463740144d035c33ac9179a7.png

每当新技术的浪潮涌来,人们总是热衷于夸大其词,仿佛一夜之间就能颠覆整个世界。对于 ChatGPT 这样的 AI 技术,虽然它有可能最终取代或深度融合搜索引擎,但技术的演进终究需要时间。新旧技术之间会经历长时间的共存与融合,而非一蹴而就的颠覆。

在使用 ChatGPT 的过程中,我有一个困惑:为什么它在不知道答案的情况下,会编造一个看似真实但实则不存在的答案呢?这种真假难辨的回应,有时会让我误入歧途,走向错误的方向。

此外,我还发现 ChatGPT 在解决现有问题上也存在不足。当程序出现异常时,向 ChatGPT 求助往往会得到一些看似正确但实则无用的答案。相比之下,搜索引擎在此时显得更为靠谱。毕竟,你所遇到的问题,很可能已经有前人遇到过并留下了解决方案。这些经过人们验证和记录的答案,相对来说更加可靠。

由此可见,GPT 等 AI 技术仍有很大的进步空间。期待着科技巨头们能够继续投入研发,推动 AI 技术的不断突破,为我们带来更加强大和实用的产品。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/814165.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从零实现诗词GPT大模型:数据集介绍和预处理

本章将介绍该系列文章中使用的数据集,并且编写预处理代码,处理成咱们需要的格式。 一、数据集介绍 咱们使用的数据集名称是chinese-poetry,是一个在github上开源的中文诗词数据集,根据仓库中readme.md中的介绍,该数据…

使用阿里云试用Elasticsearch学习:使用内置模型 lang_ident_model_1 创建管道并使用

文档:https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-model.html 部署刚刚下载好的内置模型 部署内存不够用 还得花钱,拉几把倒吧。就用自带的吧。 测试模型 POST _ml/trained_models/lang_ident_model_1/_infer {"doc…

错题记录-华为海思

华为 海思数字芯片 参考 :FPGA开发/数字IC笔试系列(5) 华为海思IC笔试解析 FPGA开发/数字IC笔试系列(6) 华为海思IC笔试解析 SystemVerilog Function与Task的区别 $readmemh与$readmemb这两个系统任务是用来从指定文件中读取数据到寄存器数组或者RAM、ROM中。除了…

IP地址修改步骤详解

IP地址是网络设备在网络中的标识,它决定了设备在网络中的位置与可访问性。然而,在某些情况下,我们可能需要修改IP地址,以满足特定的网络需求或解决网络问题。虎观代理将详细介绍IP地址的修改步骤,帮助读者更好地理解和…

HarmonyOS4-学习入门知识总结

简单的组件学习: /*** weip 自定义控件* 自定义构建函数也是需要充电的地方,分全局和局部的* 全局:需要添加function关键字 局部:不加function关键字* Styles function 自定义公共样式 分全局和局部* Extends(Text) 继承模式 只…

150个 HTML5 网站模版 量大慢选

HTML5 网站模版 No.1 HTML5 网站模版 No.1

计算机网络之同轴电缆,集线器,网桥,交换机,路由器

ping的过程 两台主机用交叉线连接,通过88.2ping88.3发现底层是先经过广播,通过arp协议,告诉我要找的ip是88.3,然后88.3主机收到后就把自己的mac地址发送回去,同理88.2发现是发给自己的后就进行接收,有了mac地址然后再通…

分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别 目录 分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别分类效果基…

字体体积压缩

环境:python3 关键步骤: pip install fontTools目录详情: 执行 pyftsubset.exe SourceHanSansCN-Medium.ttf --text-file3500.txt然后打开:TTF To Woff2,选择文件上传,等待处理,下载,使用 附常用汉字,字体文件请善用百度 3500.txt 工才下寸丈大与万上小口山巾千乞川亿个…

【C++算法竞赛 · 图论】图的存储

前言 图的存储 邻接矩阵 方法 复杂度 应用 例题 题解 邻接表 方法 复杂度 应用 前言 上一篇文章中(【C算法竞赛 图论】图论基础),介绍了图论相关的概念和一种图的存储的方法,这篇文章将会介绍剩下的两种方法&#xff…

【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库),用户可以通过搜索关键字来进行查询关联度最高的News,实现对文本的搜索引擎: 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…

zookeeper和kafka消息队列

zookeeper zookeeper介绍 Zookeeper是一个开源的分布式的,为分布式框架提供协调服务的Apache项目 zookeeper特点 zookeeper是由一个领导者(leader),多个跟随者(follower)组成的集群 Zookeepe集群中只要有半数以上节点存活,Zookeeper集群…

使用Postman发送跨域请求实验

使用Postman发送跨域请求 1 跨域是什么?2 何为同源呢?3 跨域请求是如何被检测到的?4 Postman跨域请求测试4.1 后端准备4.2 测试用例4.2.1 后端未配置跨域请求(1) 前端不跨域(2)前端跨域 4.2.2 后端配置跨域信息(1&…

数据结构-链表刷题集(长期更新)

文章目录 1. leetcode 2 两数之和1.1 解法一 1. leetcode 2 两数之和 1.1 解法一 题目及其相关实例如下 要做这个题,首先我们要学会模拟竖式的加法,我们知道即使是java基本数据中最大的long类型范围也是有限的,那如果超出范围了我们该怎么办呢,我们就需要用字符串来模拟这个…

Mac 下 Python+Selenium 自动上传西瓜视频

背景 研究下 PythonSelenium 自动化测试框架,简单实现 Mac 下自动化批量上传视频西瓜视频并发布,分享给需要的同学(未做过多的异常处理)。 脚本实现 首先通过手工手机号登录,保存西瓜视频网站的 cookie 文件 之后加载…

【蓝桥杯】第十五届蓝桥杯大赛软件赛省赛(Java研究生组)个人解题思路及代码分享

文章目录 试题A:劲舞团试题B:召唤数字精灵试题C:封闭图形的个数试题D:商品库存管理试题E:砍柴试题F:回文字符串试题G:最大异或节点试题H:植物生命力 试题A:劲舞团 【问题…

napi系列学习高阶篇——通过IDE集成C/C++三方库并开发napi接口

简介 应用在调用系统固件集成的C/C三方库时,可能会由于系统固件集成端与IDE的NDK中libc版本不一致导致调用失败,而且系统固件集成的C/C三方库对于应用的调式也很不友好,需要多方编译调试,很不方便。因此本文将通过在IDE上适配ope…

mp3怎样才能转换成wav格式?音频互相转换的方法

一,什么是WAV WAV,全称为波形音频文件(Waveform Audio File Format),是一种由微软公司和IBM公司联合开发的音频文件格式。自1991年问世以来,WAV格式因其无损的音频质量和广泛的兼容性,成为了多…

【opencv】示例-morphology2.cpp 形态学操作:膨胀、腐蚀、开运算、闭运算

element_shape MORPH_ELLIPSE; element_shape MORPH_RECT element_shape MORPH_CROSS; // 包含必要的OpenCV头文件 #include "opencv2/imgproc.hpp" // 图像处理 #include "opencv2/imgcodecs.hpp" // 图像编码解码 #include "opencv2/highgui.hpp…

Zynq学习笔记--AXI 总线概述

目录 1. AXI总线概述 1.1 主要特点 1.2 通道功能 1.3 信号概览 2. AXI Interconnect 2.1 信号说明 2.2 内部结构 3. PS-PL AXI Interface 3.1 AXI FPD/LFP/ACP 3.2 Address Editor 3.3 地址空间 3.4 AXI-DDR 4. 通过ILA观察AXI信号 4.1 AXI 读通道 1. AXI总线概述…