分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

目录

    • 分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别;
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入120个特征,输出8个类别,三个主程序,依次运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

迁移学习(Transfer Learning):迁移学习是指将在一个任务上学到的知识迁移到另一个相关任务上的技术。在本场景中,迁移学习可以用于从已有的数据集或模型中学习到的知识,来帮助解决多特征分类或故障识别问题。

GASF(Gramian Angular Summation Field):GASF是一种用于表示时间序列数据的可视化技术,通过将时间序列数据转换为二维图像来捕捉其特征。GASF可以将时间序列数据转换为格拉姆角场,提供了一种在图像领域中应用卷积神经网络的方式。

CNN(Convolutional Neural Network):卷积神经网络是一种深度学习模型,特别适用于处理具有网格结构数据(如图像)的任务。在这个场景中,CNN用于处理GASF表示的时间序列数据,以从中提取特征。

Multihead Attention(多头注意力机制):多头注意力机制是模型中的一种关键机制,用于捕捉输入序列中的重要信息。它将输入序列分成多个子序列,并对每个子序列进行注意力计算。这种机制可以使模型在学习过程中关注不同子序列的不同方面。

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------% 从data中获取当前样本数据featureData = data(sampleIdx, 1:end - 1);X = featureData;m = length(X);% 将数据归一化到[0, 1]X_normalized = (X - min(X)) / (max(X) - min(X));% 分成Q个分位箱(按照个数),从小往大:1234Q = 4;% 将每个元素映射到分位箱1234,X_Q = ones(1, numDataPoints);threshold = 0;% 初始化阈值thresholds = ones(1, Q + 1);for i = 2 : Q + 1% 循环计算小于当前阈值的数据个数,达到阈值时跳出循环while sum(X_normalized < threshold) < numDataPoints * (i - 1) / Qthreshold = threshold + 0.0001;end% 记录每一个分位箱的阈值thresholds(i) = threshold;% 将原始数据向量变成对应的分位箱次序向量X_Q(find(X_normalized < thresholds(i) & X_normalized > thresholds(i - 1))) = i - 1;endsum_11 = 0; sum_12 = 0; sum_13 = 0; sum_14 = 0;sum_21 = 0; sum_22 = 0; sum_23 = 0; sum_24 = 0;sum_31 = 0; sum_32 = 0; sum_33 = 0; sum_34 = 0;sum_41 = 0; sum_42 = 0; sum_43 = 0; sum_44 = 0;
for i = 1:numImagesimageFileName = sortedImageFiles(i).name;imagePath = fullfile(inputFolder, imageFileName);% 读取图像img = imread(imagePath);% 调整图像尺寸    
%% 设置训练选项
options = trainingOptions('adam', ...            % 使用Adam优化器'MiniBatchSize', 15, ...                     % 每个迭代的迷你批次大小'MaxEpochs', 5, ...                          % 最大训练迭代次数'InitialLearnRate', 0.001, ...               % 初始学习率'Shuffle', 'every-epoch', ...                % 每个迭代都对数据进行洗牌'Verbose', false, ...                        % 不显示训练过程中的详细输出'Plots', 'training-progress');               % 显示训练进度图

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/814154.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字体体积压缩

环境:python3 关键步骤: pip install fontTools目录详情: 执行 pyftsubset.exe SourceHanSansCN-Medium.ttf --text-file3500.txt然后打开:TTF To Woff2,选择文件上传,等待处理,下载,使用 附常用汉字,字体文件请善用百度 3500.txt 工才下寸丈大与万上小口山巾千乞川亿个…

【C++算法竞赛 · 图论】图的存储

前言 图的存储 邻接矩阵 方法 复杂度 应用 例题 题解 邻接表 方法 复杂度 应用 前言 上一篇文章中&#xff08;【C算法竞赛 图论】图论基础&#xff09;&#xff0c;介绍了图论相关的概念和一种图的存储的方法&#xff0c;这篇文章将会介绍剩下的两种方法&#xff…

【大语言模型】应用:10分钟实现搜索引擎

本文利用20Newsgroup这个数据集作为Corpus(语料库)&#xff0c;用户可以通过搜索关键字来进行查询关联度最高的News&#xff0c;实现对文本的搜索引擎&#xff1a; 1. 导入数据集 from sklearn.datasets import fetch_20newsgroupsnewsgroups fetch_20newsgroups()print(fNu…

zookeeper和kafka消息队列

zookeeper zookeeper介绍 Zookeeper是一个开源的分布式的&#xff0c;为分布式框架提供协调服务的Apache项目 zookeeper特点 zookeeper是由一个领导者(leader)&#xff0c;多个跟随者(follower)组成的集群 Zookeepe集群中只要有半数以上节点存活&#xff0c;Zookeeper集群…

使用Postman发送跨域请求实验

使用Postman发送跨域请求 1 跨域是什么&#xff1f;2 何为同源呢?3 跨域请求是如何被检测到的&#xff1f;4 Postman跨域请求测试4.1 后端准备4.2 测试用例4.2.1 后端未配置跨域请求(1) 前端不跨域&#xff08;2&#xff09;前端跨域 4.2.2 后端配置跨域信息&#xff08;1&…

数据结构-链表刷题集(长期更新)

文章目录 1. leetcode 2 两数之和1.1 解法一 1. leetcode 2 两数之和 1.1 解法一 题目及其相关实例如下 要做这个题,首先我们要学会模拟竖式的加法,我们知道即使是java基本数据中最大的long类型范围也是有限的,那如果超出范围了我们该怎么办呢,我们就需要用字符串来模拟这个…

Mac 下 Python+Selenium 自动上传西瓜视频

背景 研究下 PythonSelenium 自动化测试框架&#xff0c;简单实现 Mac 下自动化批量上传视频西瓜视频并发布&#xff0c;分享给需要的同学&#xff08;未做过多的异常处理&#xff09;。 脚本实现 首先通过手工手机号登录&#xff0c;保存西瓜视频网站的 cookie 文件 之后加载…

【蓝桥杯】第十五届蓝桥杯大赛软件赛省赛(Java研究生组)个人解题思路及代码分享

文章目录 试题A&#xff1a;劲舞团试题B&#xff1a;召唤数字精灵试题C&#xff1a;封闭图形的个数试题D&#xff1a;商品库存管理试题E&#xff1a;砍柴试题F&#xff1a;回文字符串试题G&#xff1a;最大异或节点试题H&#xff1a;植物生命力 试题A&#xff1a;劲舞团 【问题…

napi系列学习高阶篇——通过IDE集成C/C++三方库并开发napi接口

简介 应用在调用系统固件集成的C/C三方库时&#xff0c;可能会由于系统固件集成端与IDE的NDK中libc版本不一致导致调用失败&#xff0c;而且系统固件集成的C/C三方库对于应用的调式也很不友好&#xff0c;需要多方编译调试&#xff0c;很不方便。因此本文将通过在IDE上适配ope…

mp3怎样才能转换成wav格式?音频互相转换的方法

一&#xff0c;什么是WAV WAV&#xff0c;全称为波形音频文件&#xff08;Waveform Audio File Format&#xff09;&#xff0c;是一种由微软公司和IBM公司联合开发的音频文件格式。自1991年问世以来&#xff0c;WAV格式因其无损的音频质量和广泛的兼容性&#xff0c;成为了多…

【opencv】示例-morphology2.cpp 形态学操作:膨胀、腐蚀、开运算、闭运算

element_shape MORPH_ELLIPSE; element_shape MORPH_RECT element_shape MORPH_CROSS; // 包含必要的OpenCV头文件 #include "opencv2/imgproc.hpp" // 图像处理 #include "opencv2/imgcodecs.hpp" // 图像编码解码 #include "opencv2/highgui.hpp…

Zynq学习笔记--AXI 总线概述

目录 1. AXI总线概述 1.1 主要特点 1.2 通道功能 1.3 信号概览 2. AXI Interconnect 2.1 信号说明 2.2 内部结构 3. PS-PL AXI Interface 3.1 AXI FPD/LFP/ACP 3.2 Address Editor 3.3 地址空间 3.4 AXI-DDR 4. 通过ILA观察AXI信号 4.1 AXI 读通道 1. AXI总线概述…

uniapp开发小程序手写板、签名、签字

可以使用这个插件进行操作 手写板-签名签字-lime-signature - DCloud 插件市场 但是目前这个插件没有vue3 setup Composition API的写法。所以对于此文档提供的可以直接使用,需要使用Composition API方式实现的,可以继续看。 因为Composition API方式,更加的简单、灵活,…

在Windows中用命令行编译C项目

在Windows中可以用命令行编译C项目 官方指导文档&#xff1a; 演练&#xff1a;在命令行上编译 C 程序 | Microsoft Learn 在官方文档中可以看到&#xff0c;可以只安装VS的命令行工具集&#xff0c;如下图所示

2.0 Hadoop 运行环境

2.0 Hadoop 运行环境 分类 Hadoop 教程 由于 Hadoop 是为集群设计的软件&#xff0c;所以我们在学习它的使用时难免会遇到在多台计算机上配置 Hadoop 的情况&#xff0c;这对于学习者来说会制造诸多障碍&#xff0c;主要有两个&#xff1a; 昂贵的计算机集群。多计算机构成的…

JVM性能调优——GC日志分析

文章目录 1、概述2、生成GC日志3、Parallel垃圾收集器日志解析3.1、Minor GC3.2、FULL GC 4、G1垃圾收集器日志解析4.1、Minor GC4.2、并发收集4.3、混合收集4.4、Full GC 5、CMS垃圾收集器日志解析5.1、Minor GC5.2、Major GC5.3、浮动垃圾 6、日志解析工具6.1、GCeasy6.2、GC…

SpringBoot项目 jar包方式打包部署

SpringBoot项目 jar包方式打包部署 传统的Web应用进行打包部署&#xff0c;通常会打成war包形式&#xff0c;然后将War包部署到Tomcat等服务器中。 在Spring Boot项目在开发完成后&#xff0c;确实既支持打包成JAR文件也支持打包成WAR文件。然而&#xff0c;官方通常推荐将Sp…

【Godot4.2】CanvasItem绘图函数全解析 - 8.绘制点索引

概述 在示意图绘制过程中或者测试过程中&#xff0c;可能需要标记点的索引。 最常见的形式就是用一个圆圈作为背景&#xff0c;用阿拉伯数字作为索引。 实现的重点是动态计算背景圆的半径。原理是&#xff0c;获取字符串的矩形&#xff0c;取对角线长度的一半作为外接圆的半…

AI PC元年,华为的一张航海图、一艘渡轮和一张船票

今天&#xff0c;从学术研究者到产业投资者&#xff0c;无不认为大模型掀起了一场人工智能的完美风暴。 所谓“完美风暴”&#xff0c;指的是一项新技术的各个要素&#xff0c;以新的方式互相影响、彼此加强&#xff0c;组合在一起形成了摧枯拉朽般的力量。 而我们每个人&#…

【opencv】示例-phase_corr.cpp 捕获视频流并通过计算相位相关性来检测画面中的移动...

// 包含OpenCV库的头文件 #include "opencv2/core.hpp" // 包含OpenCV核心功能 #include "opencv2/videoio.hpp" // 包含视频IO功能 #include "opencv2/highgui.hpp" // 包含高级GUI功能&#xff0c;显示图像 #include "opencv2/imgproc.hp…