数学建模——微分方程介绍

一、基础知识

1、一阶微分方程

称为一阶微分方程。y(x0)=y0为定解条件。

 其常规求解方法:

(1)变量分离

再两边积分就可以求出通解。

(2)一阶线性求解公式

通解公式:

有些一阶微分方程需要通过整体代换,比如u=x+y,u=xy,u=x/y,u=1/yn等化为以上两种类型求解后再还原。

2、二阶常系数微分方程

【1】

【2】

【1】为齐次,【2】为非齐次。

2.1 齐次【1】的通解构造

为【1】的特征方程。

(1)若特征方程有两个不同实根【1】通解为

(2)若特征方程有重根 【1】的通解为

 (3)若特征方程有一对共轭复根【1】通解为

 2.2 非齐次【2】的通解

 (1)若y*是【2】的一个特解,则【2】的通解为

 (2)若y1*是的一个特解,y2*的一个特解,则微分方程的通解为

 3、微分方程稳定性理论简介

3.1 一阶微分方程的平衡点及稳定性

 【3】

【3】的右端不含自变量t,称为自治方程,代数方程 f(x)=0的实根x=x0称为【1】的平衡点(奇点),它也是【1】的解(奇解)。

如果方程[3]的解从某个x(0)出发,满足 【4】

则称平衡点x0是稳定的,否则就不稳定。

若f(x)可微,则将f(x)在x0附近做一阶Taylor展开,则(1)就近似表达为【5】

当x-x00时R1(x)是高阶无穷小。则[5]是【1】的近似线性方程,x0也是[5]的平衡点,关于x0的稳定性,有如下结论:

(1)若x0对于【5】是稳定的;

(2)若x0对于【5】是不稳定的;

3.2 二元方程的平衡点及稳定性

【6】

【6】右端不显含t,称为自治方程,方程组【7】

的根x1=x10,x2=x20称为【6】的平衡点,记为p0(x10,x20).

如果【8】

称p0为稳定的;否则称为不稳定的。

(1)线性常系数方程的稳定性讨论

【9】

设【9】的系数矩阵为A,当|A|≠0时,【9】有唯一的平衡点p0(0,0)。若A有两个特征根

【10】

(1*)若两个特征根都为负数或有负实部,则p0是平稳的;即p>0,q>0,平衡点稳定;

(2*)若两个特征根有一个为正或正实部,则p0是不稳定的。即p<0或q<0,平衡点不稳定;

(2)非线性二元方程,在p0(x10,x20)的稳定性讨论方法如下:

剩下的判断方法同上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81121.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四种常用的自动化测试框架

一直想仔细研究框架&#xff0c;写个流水账似的测试程序不难&#xff0c;写个低维护成本的测试框架就很难了&#xff0c;所以研究多种测试框架还是很有必要的&#xff0c;知道孰优孰劣&#xff0c;才能在开始编写框架的时候打好基础&#xff0c;今天读到了KiKi Zhao的翻译文章&…

Java实现Ip地址获取

Java实现Ip地址获取 一、两种实现方式二、测试结果 一、两种实现方式 package com.lyp;import org.apache.commons.lang3.ObjectUtils;import java.net.*; import java.util.ArrayList; import java.util.Enumeration; import java.util.List; import java.util.Optional;/***…

Linux Ubuntu20.04深度学习环境快速配置命令记录

一、驱动安装 1、更新系统包 sudo apt-get updatesudo apt-get upgrade 2、安装显卡驱动 使用apt方式安装驱动&#xff0c;多数情况不容易成功&#xff0c; 使用一下方法更佳&#xff1a; 1.查看合适显卡的驱动版本 ubuntu-drivers devices NVIDIA GeForce 驱动程序 - …

git压缩仓库

git 压缩仓库 git gc命令压缩增量存储单元,节省磁盘空间 du -sh 查看当前文件夹占用多少K 快照的存储: 对于修改的内容,做快照处理并保存. 对于未修改的文件,做引用处理.

SOLIDWORKS Composer位置关键帧的使用

SOLIDWORKS Composer是专业的SOLIDWORKS及3D文件处理的动画制作软件&#xff0c;作为SOLIDWORKS 产品线下的一个明星存在。 SOLIDWORKS Composer几乎可以处理任何SOLIDWORKS的模型文件并将之转化成可以动作的机械动画&#xff0c;可以引用在企业的网站、产品说明书以及工作指导…

MySQL 面试题——MySQL 基础

目录 1.什么是 MySQL&#xff1f;有什么优点&#xff1f;2.MySQL 中的 DDL 与 DML 是分别指什么&#xff1f;3.✨数据类型 varchar 与 char 有什么区别&#xff1f;4.数据类型 BLOB 与 TEXT 有什么区别&#xff1f;5.DATETIME 和 TIMESTAMP 的异同&#xff1f;6.✨MySQL 中 IN …

STM32F4X SPI W25Q128

STM32F4X SPI W25Q128 什么是SPISPI的特点SPI通信引脚SPI接线方式SPI速率SPI通信方式SPI时钟相位和时钟极性 STM32F4X SPISTM32F4X SPI配置STM32F4X SPI频率 W25Q128W25Q128存储结构W25Q128读写操作W25Q128常用指令读取ID命令(0x90)写使能命令(0x06)禁止写使能命令(0x04)读取W2…

黑马JVM总结(七)

&#xff08;1&#xff09;StringTable_编译器优化 “a”“b”对应#4&#xff1a;是去常量池中找ab的这个符号 astore 5&#xff1a;是把这个存入编号为5的局部变量 “ab”对应的指令 #4&#xff0c;跟“a”“b”对应#4下面弄是一样的 在执行s3“ab”这行个代码时&#xf…

在PHP8中向数组添加元素-PHP8知识详解

在php8中向数组添加元素有多种方法&#xff0c;在这里主要讲解几个常用的方法&#xff1a;使用方括号[]添加元素、使用array_unshift()函数&#xff0c;向数组的头部添加元素、使用array_push()函数&#xff0c;向数组的尾部添加元素、使用array_splice()函数添加元素。 1、使用…

学习Bootstrap 5的第十三天

目录 提示框 如何创建提示框 实例 指定提示框的位置 实例 弹出框 如何创建弹出框 实例 指定弹出框的位置 实例 关闭弹出框 实例 提示框 提示框是一个小小的弹窗&#xff0c;在鼠标移动到元素上显示&#xff0c;鼠标移到元素外就消失。 如何创建提示框 Bootstrap…

LeetCode 332. Reconstruct Itinerary【欧拉回路,通路,DFS】困难

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

Vue3+ElementUI使用

<!DOCTYPE html> <html> <head><meta charset"UTF-8"><meta name"viewport" content"initial-scale1.0,maximum-scale1.0,minimum-scale1.0,user-scalable0, widthdevice-width"/><!-- 引入样式 --><lin…

【C++】list的模拟实现【完整理解版】

目录 一、list的概念引入 1、vector与list的对比 2、关于struct和class的使用 3、list的迭代器失效问题 二、list的模拟实现 1、list三个基本函数类 2、list的结点类的实现 3、list的迭代器类的实现 3.1 基本框架 3.2构造函数 3.3 operator* 3.4 operator-> 3…

bug总结问题集和知识点集(一)

目录 一 bug问题集1. 端口被占用 二 oracle1. oracle查看版本怎么操作2. oracle数据库&#xff1a;参数个数无效![在这里插入图片描述](https://img-blog.csdnimg.cn/6a2eebc164f9406c81525371893bbd11.png)3. ORACLE数据库如何完整卸载? 三 mybatis1. mybatis用注解如何实现模…

学习Node js:raw-body模块源码解析

raw-body是什么 raw-body的主要功能是处理HTTP请求体的原始数据。它提供了以下核心功能&#xff1a; 解析请求体&#xff1a;可以从HTTP请求中提取原始数据&#xff0c;包括文本和二进制数据。配置选项&#xff1a;通过配置项&#xff0c;可以设置请求体的大小限制、编码方式…

【LeetCode-简单题KMP】232. 用栈实现队列

文章目录 题目方法一&#xff1a;用输入栈和输出栈模拟队列 题目 方法一&#xff1a;用输入栈和输出栈模拟队列 只有输出栈为空的时候才能将输入栈的元素补充到输出栈&#xff0c;否则输出栈不为空&#xff0c;如果再从输入栈往输出栈填充元素&#xff0c;就会弄乱队列的先进先…

【SpringMVC】拦截器JSR303的使用

【SpringMVC】拦截器&JSR303的使用 1.1 什么是JSR3031.2 为什么使用JSR3031.3 常用注解1.4 Validated与Valid区别1.5 JSR快速入门1.5.2 配置校验规则# 1.5.3 入门案例二、拦截器2.1 什么是拦截器2.2 拦截器与过滤器2.3 应用场景2.4 拦截器快速入门2.5.拦截器链2.6登录案列权…

接口测试——接口协议抓包分析与mock_L1

目录&#xff1a; 接口测试价值与体系常见的接口协议接口测试用例设计postman基础使用postman实战练习 1.接口测试价值与体系 接口测试概念 接口&#xff1a;不同的系统之间相互连接的部分&#xff0c;是一个传递数据的通道接口测试&#xff1a;检查数据的交换、传递和控制…

设计模式之职责链模式

职责链模式:使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;直到有一个对象处理它为止。 这里发出这个请求的客户端并不知道这当中的哪一个对象最终处理这个请求&am…

TCP详解之三次握手和四次挥手

TCP详解之三次握手和四次挥手 1. TCP基本认识 1.1 什么是 TCP TCP是面向连接的、可靠的、基于字节流的传输层通信协议。 1.2 TCP协议段格式 我们先来看看TCP首部协议的格式 我们先来介绍一些与本文关联比较大的字段&#xff0c;其他字段不做详细阐述。 序列号&#xff1a…