Java手写最大子数组和算法(如Kadane算法)和最大子数组和算法(如Kadane算法)应用拓展案例

Java手写最大子数组和算法(如Kadane算法)和最大子数组和算法(如Kadane算法)应用拓展案例

1. 算法思维导图

以下是使用mermaid代码表示的Kadane算法的实现原理:

初始化当前子数组的最大和为0
初始化全局最大和为负无穷大
遍历数组中的每个元素
当前子数组和是否大于0
更新当前子数组和为当前元素值
将当前元素值加到当前子数组和上
当前子数组和是否大于全局最大和
更新全局最大和为当前子数组和
继续遍历下一个元素

2. 该算法的手写必要性和市场调查

手写最大子数组和算法的必要性在于理解算法的原理和实现细节,以及在实际应用中能够根据需求进行定制化的修改。市场调查显示,Kadane算法是解决最大子数组和问题的常用算法之一,广泛应用于数据分析、金融领域、图像处理等多个领域。

3. 该算法的实现详细介绍和步骤

Kadane算法是一种动态规划算法,用于求解给定数组中最大子数组的和。以下是该算法的详细步骤:

  1. 初始化当前子数组的最大和为0,并初始化全局最大和为负无穷大。
  2. 遍历数组中的每个元素。
  3. 判断当前子数组和是否大于0:
    • 如果大于0,更新当前子数组和为当前元素值。
    • 如果小于等于0,将当前元素值加到当前子数组和上。
  4. 判断当前子数组和是否大于全局最大和:
    • 如果大于全局最大和,更新全局最大和为当前子数组和。
    • 如果小于等于全局最大和,继续遍历下一个元素。
  5. 重复步骤2-4,直到遍历完所有元素。
  6. 返回全局最大和作为最大子数组的和。

4. 该算法的手写实现总结和思维拓展

手写实现Kadane算法能够加深对算法原理和实现细节的理解,同时也能够提高编程能力和算法设计能力。思维拓展方面,可以尝试对该算法进行优化,例如使用分治法或并行计算来加速最大子数组和的计算过程。

5. 该算法的完整代码

以下是Java语言实现的Kadane算法的完整代码,每行代码都有注释说明:

public class KadaneAlgorithm {public static int maxSubArraySum(int[] nums) {int maxSum = Integer.MIN_VALUE; // 初始化全局最大和为负无穷大int currentSum = 0; // 初始化当前子数组的最大和为0for (int i = 0; i < nums.length; i++) {if (currentSum > 0) { // 当前子数组和大于0currentSum = nums[i]; // 更新当前子数组和为当前元素值} else {currentSum += nums[i]; // 将当前元素值加到当前子数组和上}if (currentSum > maxSum) { // 当前子数组和大于全局最大和maxSum = currentSum; // 更新全局最大和为当前子数组和}}return maxSum; // 返回全局最大和作为最大子数组的和}public static void main(String[] args) {int[] nums = {-2, 1, -3, 4, -1, 2, 1, -5, 4};int maxSum = maxSubArraySum(nums);System.out.println("The maximum subarray sum is: " + maxSum);}
}

6. 该算法的应用前景调研

Kadane算法作为解决最大子数组和问题的经典算法,在实际应用中具有广泛的前景。以下是对该算法的应用前景的调研结果:

  • 数据分析领域:Kadane算法可以用于求解时间序列数据中的最大子序列和,从而帮助分析师发现数据中的趋势和异常情况。
  • 金融领域:Kadane算法可以用于计算股票价格序列中的最大收益,帮助投资者制定买入和卖出策略。
  • 图像处理领域:Kadane算法可以用于图像处理中的边缘检测和特征提取等任务,通过计算图像中的最大子数组和来定位感兴趣的区域。

7. 该算法的拓展应用案例

以下是Kadane算法的三个拓展应用案例的完整代码,每个步骤的代码都有文字描述:

拓展应用案例1:最大连续乘积子数组

public class MaxProductSubarray {public static int maxProduct(int[] nums) {int maxProduct = nums[0]; // 初始化最大连续乘积为第一个元素int minProduct = nums[0]; // 初始化最小连续乘积为第一个元素int maxResult = nums[0]; // 初始化最大结果为第一个元素for (int i = 1; i < nums.length; i++) {if (nums[i] < 0) { // 当前元素为负数,交换最大连续乘积和最小连续乘积int temp = maxProduct;maxProduct = minProduct;minProduct = temp;}maxProduct = Math.max(nums[i], maxProduct * nums[i]); // 更新最大连续乘积minProduct = Math.min(nums[i], minProduct * nums[i]); // 更新最小连续乘积maxResult = Math.max(maxResult, maxProduct); // 更新最大结果}return maxResult; // 返回最大结果作为最大连续乘积子数组的乘积}public static void main(String[] args) {int[] nums = {-2, 3, -4, 5, -6};int maxProduct = maxProduct(nums);System.out.println("The maximum product of a subarray is: " + maxProduct);}
}

拓展应用案例2:最长连续递增子数组

public class LongestIncreasingSubarray {public static int longestIncreasingSubarray(int[] nums) {int maxLength = 1; // 初始化最长连续递增子数组长度为1int currentLength = 1; // 初始化当前连续递增子数组长度为1for (int i = 1; i < nums.length; i++) {if (nums[i] > nums[i - 1]) { // 当前元素大于前一个元素currentLength++; // 当前连续递增子数组长度加1maxLength = Math.max(maxLength, currentLength); // 更新最长连续递增子数组长度} else {currentLength = 1; // 当前元素不大于前一个元素,重置当前连续递增子数组长度为1}}return maxLength; // 返回最长连续递增子数组长度}public static void main(String[] args) {int[] nums = {1, 3, 5, 2, 4, 6, 8};int maxLength = longestIncreasingSubarray(nums);System.out.println("The length of the longest increasing subarray is: " + maxLength);}
}

拓展应用案例3:最长连续公差子数组

public class LongestArithmeticSubarray {public static int longestArithmeticSubarray(int[] nums) {int maxLength = 2; // 初始化最长连续公差子数组长度为2int currentLength = 2; // 初始化当前连续公差子数组长度为2int difference = nums[1] - nums[0]; // 初始化公差为第一个元素和第二个元素的差for (int i = 2; i < nums.length; i++) {if (nums[i] - nums[i - 1] == difference) { // 当前元素和前一个元素的差等于公差currentLength++; // 当前连续公差子数组长度加1maxLength = Math.max(maxLength, currentLength); // 更新最长连续公差子数组长度} else {difference = nums[i] - nums[i - 1]; // 更新公差为当前元素和前一个元素的差currentLength = 2; // 重置当前连续公差子数组长度为2}}return maxLength; // 返回最长连续公差子数组长度}public static void main(String[] args) {int[] nums = {1, 3, 5, 7, 9, 10, 12, 14};int maxLength = longestArithmeticSubarray(nums);System.out.println("The length of the longest arithmetic subarray is: " + maxLength);}
}

以上是Kadane算法的三个拓展应用案例的完整代码,可以根据需要进行修改和调试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/81101.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习Node js:raw-body模块源码解析

raw-body是什么 raw-body的主要功能是处理HTTP请求体的原始数据。它提供了以下核心功能&#xff1a; 解析请求体&#xff1a;可以从HTTP请求中提取原始数据&#xff0c;包括文本和二进制数据。配置选项&#xff1a;通过配置项&#xff0c;可以设置请求体的大小限制、编码方式…

【LeetCode-简单题KMP】232. 用栈实现队列

文章目录 题目方法一&#xff1a;用输入栈和输出栈模拟队列 题目 方法一&#xff1a;用输入栈和输出栈模拟队列 只有输出栈为空的时候才能将输入栈的元素补充到输出栈&#xff0c;否则输出栈不为空&#xff0c;如果再从输入栈往输出栈填充元素&#xff0c;就会弄乱队列的先进先…

【SpringMVC】拦截器JSR303的使用

【SpringMVC】拦截器&JSR303的使用 1.1 什么是JSR3031.2 为什么使用JSR3031.3 常用注解1.4 Validated与Valid区别1.5 JSR快速入门1.5.2 配置校验规则# 1.5.3 入门案例二、拦截器2.1 什么是拦截器2.2 拦截器与过滤器2.3 应用场景2.4 拦截器快速入门2.5.拦截器链2.6登录案列权…

合同矩阵充要条件

两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。 正惯性指数是矩阵正特征值个数&#xff0c;负惯性指数是矩阵负特征值个数。 即合同矩阵的充分必要条件是特征值的正负号个数相同。 证明&#xff1a; 本论证中的所有矩阵先假设为对称矩阵&#xff0c;但不限于对称…

接口测试——接口协议抓包分析与mock_L1

目录&#xff1a; 接口测试价值与体系常见的接口协议接口测试用例设计postman基础使用postman实战练习 1.接口测试价值与体系 接口测试概念 接口&#xff1a;不同的系统之间相互连接的部分&#xff0c;是一个传递数据的通道接口测试&#xff1a;检查数据的交换、传递和控制…

设计模式之职责链模式

职责链模式:使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;直到有一个对象处理它为止。 这里发出这个请求的客户端并不知道这当中的哪一个对象最终处理这个请求&am…

ajax 中 success 方法的 return

做前后台交互时会经常用到 ajax&#xff0c;有时候会遇到这样的情况&#xff0c;我们在 a 方法中调用 b 方法&#xff0c;b 方法里是一个 ajax&#xff0c;成功请求后会返回一个结果 data&#xff0c;而我们希望通过 b 方法的返回值获取到 data&#xff0c;我们的代码可能是这样…

TCP详解之三次握手和四次挥手

TCP详解之三次握手和四次挥手 1. TCP基本认识 1.1 什么是 TCP TCP是面向连接的、可靠的、基于字节流的传输层通信协议。 1.2 TCP协议段格式 我们先来看看TCP首部协议的格式 我们先来介绍一些与本文关联比较大的字段&#xff0c;其他字段不做详细阐述。 序列号&#xff1a…

2023面试知识点一

1、新生代和老年代的比例 默认的&#xff0c;新生代 ( Young ) 与老年代 ( Old ) 的比例的值为 1:2 ( 该值可以通过参数 –XX:NewRatio 来指定 )&#xff0c;即&#xff1a;新生代 ( Young ) 1/3 的堆空间大小。老年代 ( Old ) 2/3 的堆空间大小。其中&#xff0c;新生代 ( …

213. 打家劫舍 II

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;动态规划 写在最后 Tag 【动态规划】【数组】 题目来源 213. 打家劫舍 II 题目解读 你是一个专业的小偷&#xff0c;现在要偷一排屋子&#xff0c;但是你不能偷相邻的两间屋子&#xff08;这一排房子的首尾是相连的&…

什么是性能调优?方法有哪些?流程是怎样的?

一、性能调优的含义 性能调优通俗来讲就是对计算机硬件、操作系统和应用有相当深入的了解&#xff0c;调节三者之间的关系&#xff0c;实现整个系统&#xff08;包括硬件、操作系统、应用&#xff09;的性能最大化&#xff0c;并能不断的满足现有的业务需求。 在判定软件存在…

将本地构建的镜像推送到远程镜像库,构建多种系统架构支持的Docker镜像并推送到Docker Hub

目录 推送到 Docker Hub前提&#xff1a;需要在 [Docker Hub](https://hub.docker.com/) 创建账户、创建仓库。1. 创建 Dockerfile 和构建镜像&#xff1a;docker build -t2. 登录到远程镜像库&#xff1a;docker login3. 将镜像标记为远程仓库地址&#xff1a;docker tag4. 推…

Ubuntu-server 22.04LTS源码编译apache服务器

1 系统环境 # cat /etc/os-release PRETTY_NAME"Ubuntu 22.04.3 LTS" NAME"Ubuntu" VERSION_ID"22.04" VERSION"22.04.3 LTS (Jammy Jellyfish)" VERSION_CODENAMEjammy IDubuntu ID_LIKEdebian HOME_URL"https://www.ubuntu.co…

Hadoop-Hbase

1. Hbase安装 1.1 安装zookeeper、 hbase 解压至/opt/soft&#xff0c;并分别改名 配置环境变量并source生效 #ZK export ZOOKEEPER_HOME/opt/soft/zk345 export PATH$ZOOKEEPER_HOME/bin:$PATH #HBASE_HOME export HBASE_HOME/opt/soft/hbase235 export PATH$HBASE_HOME/b…

浅显易懂理解傅里叶变换

说起电子硬件专业&#xff0c;那不得不提的就是傅里叶变换了。 大学课程中应该吓倒了很多人&#xff0c;谈傅里叶色变了。 本次就来重新认识一下电子硬件中的傅里叶变化。 首先理解之前&#xff0c;当然是需要先知道傅里叶这位大牛的人物百科啦。 傅里叶是法国数学家&#xff0…

【集成学习】对已训练好的模型进行投票

在不同的数据预处理情况下训练得到了三个SVM模型&#xff0c;结果都差不多&#xff0c;对这三个模型的分类结果进行投票 1、三个模型的model_path # 最终model的path self.model_path log_path/model_name_model.gz self.time_log log_path/model_name_time_log.csv# 模型1…

无涯教程-JavaScript - EXP函数

描述 EXP函数返回e升至数字的幂。常数e等于自然对数的底数2.71828182845904。 语法 EXP (number)争论 Argument描述Required/OptionalNumberThe exponent applied to the base e.Required Notes 要计算其他碱基的幂,请使用幂运算符(^) EXP是LN的倒数,LN是数字的自然对数…

【面试刷题】——TCP三次握手,以及为什么要三次握手

TCP&#xff08;传输控制协议&#xff09;的三次握手是建立TCP连接的过程&#xff0c;它确保了通信双方的正常启动和参数协商。三次握手的过程如下&#xff1a; 客户端发送请求&#xff1a; 客户端首先向服务器发送一个特殊的TCP报文&#xff0c;称为SYN&#xff08;同步&…

C#根据中文首字母排序

第一种方式&#xff1a; 这种方式会受制于服务器的区域和语言设置。 1.首先添加一个排序类ChineseNameComparer public class ChineseNameComparer : IComparer<string> {public int Compare(string x, string y){if (x null || y null)return 0;var xFirstChar x.Su…

免费:CAD批量转PDF工具,附下载地址

分享一款CAD 批量转PDF、打印的工具插件。能自动识别图框大小、自动识别比例、自动编号命名。重点&#xff01;重点&#xff01;重点&#xff01;自动将CAD的多张图纸一次性地、批量地转为PDF&#xff0c;或者打印。效果看下图&#xff1a; 适用环境&#xff1a; 32位系统 Auto…