PointNet++点云处理原理

PointNet++点云处理原理

image-20240328163042414

借鉴了多层神经网络的思想

pointnet要么是一个点,要么是所有点进行操作,就不会有局部上下文信息

pointnet++基本思想是迭代地应用到局部区域

image-20240328163410867 image-20240328163426307

1.多级别特征学习

2.旋转不变性

3.置换不变性

image-20240328163608175

选取中心点centroid,通过pointnet学到这个小区域的全局特征

sampling采样:选取centroid (sample centroids)

grouping分组:以centroid为中心,选取局部的点 (group points by centroids)

PointNet:对分组内的点应用pointnet进行特征的学习 (apply PointNet on each point group)

以上过程加起来称作Set Abstraction

image-20240328163953612 image-20240328164306573 image-20240328164531032 image-20240328164618968

PointNet++层次化特征学习的架构

经过两个set abstraction 得到全局特征

分割用到了interpolate(插值),再进行拼接,拼接后再使用pointnet对每一个点进行分类,有点像图像中的encoder+decoder的结构

image-20240328165754407 image-20240328165923034

在PointNet++中,“interpolate”(插值)是一个关键的操作,尤其在它的特征传播(feature propagation)阶段中扮演着重要的角色。

PointNet++采用的插值方法主要用于特征传播阶段,以实现多尺度特征的融合和细节的恢复。在对点云进行分层采样和分组操作后,网络需要在解码阶段将低维度的特征映射回高维度的空间。这一过程中,插值方法就被用来估计非采样点的特征。

具体来说,PointNet++中的插值方法通常指的是最近邻插值或三线性插值:

  • 最近邻插值(Nearest Neighbor Interpolation):这种方法将某一点的特征值设置为其最近邻点的特征值。它简单且计算成本低,但可能不够平滑。
  • 三线性插值(Trilinear Interpolation):在三维空间中,这种方法基于周围点的特征值通过线性插值计算目标点的特征值,能够生成更平滑的特征映射。然而,点云数据的离散性质意味着这种方法需要适当的调整或替代方案。

实际中,PointNet++常用的是一种加权平均插值方法,其中权重基于点之间的空间距离。例如,在特征传播阶段,可以通过寻找每个上采样点在原始点云中的k个最近邻点,然后基于这些邻点的特征和它们与上采样点的距离,通过加权平均来估计上采样点的特征。

这种插值方法使得PointNet++能够有效地处理不同尺度的点云数据,同时保留更多的空间结构信息,提高了对复杂场景的识别和分类精度。

非均匀采样的密度

image-20240328170051034 image-20240328170341188

小卷积核会受到可变密度的影响,对点云来说,用小的kernel效果不一定好

image-20240328170631147

MSG:同一区域拼接不同半径区域的特征,处理复杂度较高

MRG:不同级别的特征进行拼接

分类结果

image-20240328171031944 image-20240328171117897

分割结果

image-20240328171219691 image-20240328171454137 image-20240328171746819

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/777125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jconsole jvisualvm

jconsole 打开方式 命令行输入 jconsole双击想要连接的应用 界面展示 jvisualvm 打开方式 命令行输入 jvisualvm双击想要连接的应用 可以安装插件,比如 Visual GC 直观看到 GC 过程

在CentOS7上部署Nginx并测试指南

Nginx部署测试 Nginx简介 Nginx是俄罗斯人Igor Sysoev编写的一款高性能的HTTP和反向代理服务器。 Nginx选择了epoll和kqueue作为网络I/O模型,在高连接并发的情况下,内存、CPU等系统资源消耗非常低,运行稳定。 正向代理与反向代理 正向代…

Java学习记录第十三天

面向对象编程 核心思想就是OOP(面向对象编程) 面向过程&面向对象 面向过程思想 步骤清晰简单,第一步做什么,第二步做什么... 面对过程适合处理一些较为简单的问题 面向对象思想 物以类聚,分类的思维模式&…

电源噪声的起因及危害

对造成电源不稳定的根源进行简单分析如下,主要在于两个方面:一是器件高速开关状态下,瞬态的交变电流过大;二是电流回路上存在的电感。从表现形式上来看又可以分为三类:同步开关噪声(SSN),有时被称为Δi噪声,地弹(Ground bounce)现象也可归于此类(图1-a);非理想电…

2024.3.21 QT

QT登录界面设计&#xff1a; //头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMovie>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nu…

Linux manim安装

简介 根据文档可知, manim目前分为两个版本, 一个是由3Blue1Brown维护更新的最新版本的manimgl, 另一个是稳定的社区版本manim or manimce. 两个版本在安装和使用上都有些不同, 不要搞混. Linux manim ERROR No package ‘pangocairo’ found Getting requirements to buil…

C++进阶之路---C++11新特性 | lambda表达式

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C从入门到精通》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 前言&#xff1a;简介lambda 在C中&#xff0c;lambda表达式是一种匿名函数的方式&#xff0c;它可以用来解决以下问题&a…

稀碎从零算法笔记Day26-LeetCode:跳跃游戏

断更多天&#xff0c;懒狗ex 题型&#xff1a;数组、模拟、类似双指针&#xff1f; 链接&#xff1a;55. 跳跃游戏 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述 给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组…

【Diffusers库】第四篇 训练一个扩散模型(Unconditional)

目录 写在前面的话下载数据模型配置文件加载数据创建一个UNet2DModel创建一个调度器训练模型完整版代码&#xff1a; 写在前面的话 这是我们研发的用于 消费决策的AI助理 &#xff0c;我们会持续优化&#xff0c;欢迎体验与反馈。微信扫描二维码&#xff0c;添加即可。   官方…

uni-app中web-view的使用

1. uni-app中web-view的使用 uni-app中的web-view是一个 web 浏览器组件&#xff0c;可以用来承载网页的容器&#xff0c;uni-app开发的app与web-view实现交互的方式相关简单&#xff0c;应用通过属性message绑定触发事件&#xff0c;然后在web-view的网页向应用 postMessage 触…

遥感卫星影像质量评价指标汇总

1. 主观评价方法 以人为图像的评价者&#xff0c;根据自己的评价尺度和经验对图像质量进行评价。 2. 客观评价方法 1)均方差 2)信噪比 主要用来评价影像经压缩、传输、增强等处理前后的质量变化情况&#xff0c;其本质与均方差类似。 3)方差 反映了图像各个像元灰度相对…

18.字面量

文章目录 一、字面量二、区分技巧三、扩展&#xff1a; /t 制表符 一、字面量 在有些资料&#xff0c;会把字面量说成常量、字面值常量&#xff0c;这种叫法都不是很正确&#xff0c;最正确的叫法还是叫做&#xff1a;字面量。 作用&#xff1a;告诉程序员&#xff0c;数据在…

itextPdf生成pdf简单示例

文章环境 jdk1.8&#xff0c;springboot2.6.13 POM依赖 <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.13</version></dependency><dependency><groupId>com.ite…

小米还涉足了哪些领域

小米作为一家全球性的移动互联网企业&#xff0c;其业务领域相当广泛&#xff0c;除了核心的智能手机业务外&#xff0c;还涉足了许多其他领域。以下是对小米涉足领域的简要介绍&#xff1a; 智能硬件与IoT平台&#xff1a;小米是全球领先的智能硬件和IoT平台公司&#xff0c;致…

iOS网络抓包工具全解析

摘要 本文将深入探讨iOS平台上常用的网络抓包工具&#xff0c;包括Charles、克魔助手、Thor和Http Catcher&#xff0c;以及通过SSH连接进行抓包的方法。此外&#xff0c;还介绍了克魔开发助手作为iOS应用开发的辅助工具&#xff0c;提供的全方面性能监控和调试功能。 在iOS应…

Dubbo启动流程

Java面试题 Dubbo启动流程 1.服务提供者将服务实例化后注册到注册中心。 2.服务消费者向注册中心订阅所需的服务。 3.注册中心将服务提供者注册的服务地址推送给服务消费者&#xff0c;同时基于长链接推送变更。 4.服务消费者通过代理对象&#xff08;Proxy&#xff09;发起远…

【正版特惠】IDM 永久授权 优惠低至109元!

尽管小编有修改版IDM&#xff0c;但是由于软件太好用了&#xff0c;很多同学干脆就直接购买了正版&#xff0c;现在正版也不贵&#xff0c;并且授权码绑定自己的邮箱&#xff0c;直接官方下载激活&#xff0c;无需其他的绿化修改之类的操作&#xff0c;不喜欢那么麻烦的&#x…

【概率论与数理统计】Chapter2 随机变量及其分布

随机变量与分布函数 随机变量 随机变量&#xff1a;一个随机变量是对随机现象可能的结果的一种数学抽象 分布函数 分布函数&#xff1a; X为随机变量&#xff0c; F ( x ) F(x) F(x)定义为&#xff1a; F ( x ) P ( X ≤ x ) F(x) P(X \leq x) F(x)P(X≤x) 定义域&#…

基于Python实现多功能翻译助手(下)

为了将上述步骤中的功能增强与扩展具体化为代码&#xff0c;我们将实现翻译历史记录功能、翻译选项配置以及UI的改进。 翻译历史记录功能 import json # 假设有一个用于存储历史记录的json文件 HISTORY_FILE translation_history.json # 初始化历史记录列表 translati…

OpenHarmony实战开发-List组件的使用之设置项

介绍 在本篇CodeLab中&#xff0c;我们将使用List组件、Toggle组件以及Router接口&#xff0c;实现一个简单的设置页&#xff0c;点击将跳转到对应的详细设置页面。效果图如下&#xff1a; 相关概念 CustomDialog&#xff1a;CustomDialog装饰器用于装饰自定义弹窗。List&…