【Diffusers库】第四篇 训练一个扩散模型(Unconditional)

目录

  • 写在前面的话
  • 下载数据
  • 模型配置文件
  • 加载数据
  • 创建一个UNet2DModel
  • 创建一个调度器
  • 训练模型
  • 完整版代码:

写在前面的话

  这是我们研发的用于 消费决策的AI助理 ,我们会持续优化,欢迎体验与反馈。微信扫描二维码,添加即可。
  官方链接:https://ailab.smzdm.com/

************************************************************** 分割线 *******************************************************************

  本教程将讲述 如何在Smithsonian Butterflies数据集的子集上,从头开始训练UNet2DModel,最终训练个【无条件图片生成模型】,就是不能进行文生图的啊,我觉得比较适合垂直领域的数据训练。

下载数据

  训练的数据集在这个:https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset。可以使用代码进行下载。
   完整的代码在最后,因为网络的原因,调代码花了一些时间(官网默认上传hugging face,我没上传),所以要运行的话,copy最后的全部代码。我的显卡是3050,8G显存。

from datasets import load_dataset
dataset = load_dataset("huggan/smithsonian_butterflies_subset")

  代码运行完成后,它的默认下载路径在:

/Users/用户名/.cache/huggingface/datasets

  进入该目录后,可以看见下载的文件夹。

模型配置文件

  为了方便起见,训练一个包含超参数的配置文件:

from dataclasses import dataclass@dataclass
class TrainingConfig:image_size = 128  # the generated image resolutiontrain_batch_size = 16eval_batch_size = 16  # how many images to sample during evaluationnum_epochs = 50gradient_accumulation_steps = 1learning_rate = 1e-4lr_warmup_steps = 500save_image_epochs = 10save_model_epochs = 30mixed_precision = "fp16"  # `no` for float32, `fp16` for automatic mixed precisionoutput_dir = "ddpm-butterflies-128"  # the model name locally and on the HF Hubpush_to_hub = True  # whether to upload the saved model to the HF Hubhub_private_repo = Falseoverwrite_output_dir = True  # overwrite the old model when re-running the notebookseed = 0config = TrainingConfig()

加载数据

from datasets import load_datasetconfig.dataset_name = "huggan/smithsonian_butterflies_subset"
dataset = load_dataset(config.dataset_name, split="train")

  大家也可以添加一下,Smithsonian Butterflies 数据集中一些其他数据(创建一个ImageFolder文件夹),但是在 配置文件中 要进行添加对应的变量 imagefolder。当然,也可以使用自己的数据。

import matplotlib.pyplot as pltfig, axs = plt.subplots(1, 4, figsize=(16, 4))
for i, image in enumerate(dataset[:4]["image"]):axs[i].imshow(image)axs[i].set_axis_off()
fig.show()

在这里插入图片描述
  不过,这些图像的大小都不一样,所以你需要先对它们进行预处理:

  1. 统一图像尺寸:缩放到配置文件中的指定尺寸;
  2. 数据增强:通过裁剪、翻转等方法
  3. 标准化:将像素值的范围控制在[-1, 1]
from torchvision import transformspreprocess = transforms.Compose([transforms.Resize((config.image_size, config.image_size)),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),]
)

  对图像进行预处理,将图像通道转化为RGB

def transform(examples):images = [preprocess(image.convert("RGB")) for image in examples["image"]]return {"images": images}dataset.set_transform(transform)

  可以再次可视化图像,以确认它们是否已经被调整。之后就可以将数据集打包到DataLoader中进行训练了!

import torch
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)

创建一个UNet2DModel

from diffusers import UNet2DModelmodel = UNet2DModel(sample_size=config.image_size,  # the target image resolutionin_channels=3,  # the number of input channels, 3 for RGB imagesout_channels=3,  # the number of output channelslayers_per_block=2,  # how many ResNet layers to use per UNet blockblock_out_channels=(128, 128, 256, 256, 512, 512),  # the number of output channels for each UNet blockdown_block_types=("DownBlock2D",  # a regular ResNet downsampling block"DownBlock2D","DownBlock2D","DownBlock2D","AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention"DownBlock2D",),up_block_types=("UpBlock2D",  # a regular ResNet upsampling block"AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention"UpBlock2D","UpBlock2D","UpBlock2D","UpBlock2D",),
)

  还有一个方法,快速检查样本图像的形状是否与模型输出形状匹配。

sample_image = dataset[0]["images"].unsqueeze(0)print("Input shape:", sample_image.shape)
print("Output shape:", model(sample_image, timestep=0).sample.shape)

  还需要一个调度器来为图像添加一些噪声。

创建一个调度器

  调度器的作用在不同的场景下会生成不同的作用,这取决于您是使用模型进行训练还是推理。
  在推理过程中,调度器从噪声中生成图像。
  在训练过程中,调度器从图像上生成噪声。
  可以看下DDPMScheduler调度器给图像增加噪声的效果:

import torch
from PIL import Image
from diffusers import DDPMSchedulernoise_scheduler = DDPMScheduler(num_train_timesteps=1000)
noise = torch.randn(sample_image.shape)
timesteps = torch.LongTensor([50])
noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])

在这里插入图片描述
  模型的训练对象,就是去预测这些被覆盖在图像上的噪声。在这个训练过程中,loss可以被计算。

import torch.nn.functional as Fnoise_pred = model(noisy_image, timesteps).sample
loss = F.mse_loss(noise_pred, noise)

训练模型

  到目前为止,已经完成了开始训练模型的大部分内容,剩下的就是将所有内容组合在一起。
再添加一个优化器和一个学习率调度器:

from diffusers.optimization import get_cosine_schedule_with_warmupoptimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(optimizer=optimizer,num_warmup_steps=config.lr_warmup_steps,num_training_steps=(len(train_dataloader) * config.num_epochs),
)

  你还需要一种方法去评估模型,可以使用 DDPMPipeline 去生成一个batch,然后将他存为一个grid。

from diffusers import DDPMPipeline
import math
import osdef make_grid(images, rows, cols):w, h = images[0].sizegrid = Image.new("RGB", size=(cols * w, rows * h))for i, image in enumerate(images):grid.paste(image, box=(i % cols * w, i // cols * h))return griddef evaluate(config, epoch, pipeline):# Sample some images from random noise (this is the backward diffusion process).# The default pipeline output type is `List[PIL.Image]`images = pipeline(batch_size=config.eval_batch_size,generator=torch.manual_seed(config.seed),).images# Make a grid out of the imagesimage_grid = make_grid(images, rows=4, cols=4)# Save the imagestest_dir = os.path.join(config.output_dir, "samples")os.makedirs(test_dir, exist_ok=True)image_grid.save(f"{test_dir}/{epoch:04d}.png")

  现在开始梳理 整个模型训练的循环过程:

from accelerate import Accelerator
from huggingface_hub import HfFolder, Repository, whoami
from tqdm.auto import tqdm
from pathlib import Path
import osdef get_full_repo_name(model_id: str, organization: str = None, token: str = None):if token is None:token = HfFolder.get_token()if organization is None:username = whoami(token)["name"]return f"{username}/{model_id}"else:return f"{organization}/{model_id}"def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):# Initialize accelerator and tensorboard loggingaccelerator = Accelerator(mixed_precision=config.mixed_precision,gradient_accumulation_steps=config.gradient_accumulation_steps,log_with="tensorboard",logging_dir=os.path.join(config.output_dir, "logs"),)if accelerator.is_main_process:if config.push_to_hub:repo_name = get_full_repo_name(Path(config.output_dir).name)repo = Repository(config.output_dir, clone_from=repo_name)elif config.output_dir is not None:os.makedirs(config.output_dir, exist_ok=True)accelerator.init_trackers("train_example")# Prepare everything# There is no specific order to remember, you just need to unpack the# objects in the same order you gave them to the prepare method.model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler)global_step = 0# Now you train the modelfor epoch in range(config.num_epochs):progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)progress_bar.set_description(f"Epoch {epoch}")for step, batch in enumerate(train_dataloader):clean_images = batch["images"]# Sample noise to add to the imagesnoise = torch.randn(clean_images.shape).to(clean_images.device)bs = clean_images.shape[0]# Sample a random timestep for each imagetimesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device).long()# Add noise to the clean images according to the noise magnitude at each timestep# (this is the forward diffusion process)noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)with accelerator.accumulate(model):# Predict the noise residualnoise_pred = model(noisy_images, timesteps, return_dict=False)[0]loss = F.mse_loss(noise_pred, noise)accelerator.backward(loss)accelerator.clip_grad_norm_(model.parameters(), 1.0)optimizer.step()lr_scheduler.step()optimizer.zero_grad()progress_bar.update(1)logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}progress_bar.set_postfix(**logs)accelerator.log(logs, step=global_step)global_step += 1# After each epoch you optionally sample some demo images with evaluate() and save the modelif accelerator.is_main_process:pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:evaluate(config, epoch, pipeline)if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:if config.push_to_hub:repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=True)else:pipeline.save_pretrained(config.output_dir)

  现在你终于可以使用 Accelerate的notebook_launcher函数来启动训练了。将训练循环、所有训练参数以及要用于训练的进程数(你可以将其更改为可用的GPU数量)传递给这个函数:

from accelerate import notebook_launcher
args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
notebook_launcher(train_loop, args, num_processes=1)

  在训练完成后,就可以看最后生成图像的模型了。

import glob
sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
Image.open(sample_images[-1])

完整版代码:

# -*- coding:utf-8 _*-
# Author : Robin Chen
# Time : 2024/3/27 20:06
# File : train_diffusion.py
# Purpose: train a unconditional diffusion modelfrom diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from accelerate import Accelerator
from huggingface_hub import HfFolder, Repository, whoami
from tqdm.auto import tqdm
from pathlib import Path
import os
from accelerate import notebook_launcher
from diffusers.optimization import get_cosine_schedule_with_warmup
from PIL import Image
import torch.nn.functional as F
import torch
from torchvision import transforms
from dataclasses import dataclass
from datasets import load_dataset# from huggingface_hub import notebook_loginos.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:7890'
# notebook_login()dataset = load_dataset("huggan/smithsonian_butterflies_subset")@dataclass
class TrainingConfig:image_size = 128  # the generated image resolutiontrain_batch_size = 16eval_batch_size = 16  # how many images to sample during evaluationnum_epochs = 50gradient_accumulation_steps = 1learning_rate = 1e-4lr_warmup_steps = 500save_image_epochs = 10save_model_epochs = 30mixed_precision = "fp16"  # `no` for float32, `fp16` for automatic mixed precisionoutput_dir = "ddpm-butterflies-128"  # the model name locally and on the HF Hubpush_to_hub = False  # True  # whether to upload the saved model to the HF Hubhub_private_repo = Falseoverwrite_output_dir = True  # overwrite the old model when re-running the notebookseed = 0def transform(examples):images = [preprocess(image.convert("RGB")) for image in examples["image"]]return {"images": images}def make_grid(images, rows, cols):w, h = images[0].sizegrid = Image.new("RGB", size=(cols * w, rows * h))for i, image in enumerate(images):grid.paste(image, box=(i % cols * w, i // cols * h))return griddef evaluate(config, epoch, pipeline):# Sample some images from random noise (this is the backward diffusion process).# The default pipeline output type is `List[PIL.Image]`images = pipeline(batch_size=config.eval_batch_size,generator=torch.manual_seed(config.seed),).images# Make a grid out of the imagesimage_grid = make_grid(images, rows=4, cols=4)# Save the imagestest_dir = os.path.join(config.output_dir, "samples")os.makedirs(test_dir, exist_ok=True)image_grid.save(f"{test_dir}/{epoch:04d}.png")def get_full_repo_name(model_id: str, organization: str = None, token: str = None):if token is None:token = HfFolder.get_token()if organization is None:username = whoami(token)["name"]return f"{username}/{model_id}"else:return f"{organization}/{model_id}"config = TrainingConfig()config.dataset_name = "huggan/smithsonian_butterflies_subset"dataset = load_dataset(config.dataset_name, split="train")preprocess = transforms.Compose([transforms.Resize((config.image_size, config.image_size)),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.5], [0.5]),]
)dataset.set_transform(transform)train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)model = UNet2DModel(sample_size=config.image_size,  # the target image resolutionin_channels=3,  # the number of input channels, 3 for RGB imagesout_channels=3,  # the number of output channelslayers_per_block=2,  # how many ResNet layers to use per UNet blockblock_out_channels=(128, 128, 256, 256, 512, 512),  # the number of output channels for each UNet blockdown_block_types=("DownBlock2D",  # a regular ResNet downsampling block"DownBlock2D","DownBlock2D","DownBlock2D","AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention"DownBlock2D",),up_block_types=("UpBlock2D",  # a regular ResNet upsampling block"AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention"UpBlock2D","UpBlock2D","UpBlock2D","UpBlock2D",),
)sample_image = dataset[0]["images"].unsqueeze(0)print("Input shape:", sample_image.shape)
print("Output shape:", model(sample_image, timestep=0).sample.shape)noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
noise = torch.randn(sample_image.shape)
timesteps = torch.LongTensor([50])
noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])noise_pred = model(noisy_image, timesteps).sample
loss = F.mse_loss(noise_pred, noise)optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(optimizer=optimizer,num_warmup_steps=config.lr_warmup_steps,num_training_steps=(len(train_dataloader) * config.num_epochs),
)def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):# Initialize accelerator and tensorboard loggingaccelerator = Accelerator(mixed_precision=config.mixed_precision,gradient_accumulation_steps=config.gradient_accumulation_steps,log_with="tensorboard",) #         logging_dir=os.path.join(config.output_dir, "logs"),if accelerator.is_main_process:if config.push_to_hub:repo_name = get_full_repo_name(Path(config.output_dir).name)# repo = Repository(config.output_dir, clone_from=repo_name)elif config.output_dir is not None:os.makedirs(config.output_dir, exist_ok=True)accelerator.init_trackers("train_example")# Prepare everything# There is no specific order to remember, you just need to unpack the# objects in the same order you gave them to the prepare method.model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(model, optimizer, train_dataloader, lr_scheduler)global_step = 0# Now you train the modelfor epoch in range(config.num_epochs):progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)progress_bar.set_description(f"Epoch {epoch}")for step, batch in enumerate(train_dataloader):clean_images = batch["images"]# Sample noise to add to the imagesnoise = torch.randn(clean_images.shape).to(clean_images.device)bs = clean_images.shape[0]# Sample a random timestep for each imagetimesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device).long()# Add noise to the clean images according to the noise magnitude at each timestep# (this is the forward diffusion process)noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)with accelerator.accumulate(model):# Predict the noise residualnoise_pred = model(noisy_images, timesteps, return_dict=False)[0]loss = F.mse_loss(noise_pred, noise)accelerator.backward(loss)accelerator.clip_grad_norm_(model.parameters(), 1.0)optimizer.step()lr_scheduler.step()optimizer.zero_grad()progress_bar.update(1)logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}progress_bar.set_postfix(**logs)accelerator.log(logs, step=global_step)global_step += 1# After each epoch you optionally sample some demo images with evaluate() and save the modelif accelerator.is_main_process:pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:evaluate(config, epoch, pipeline)if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:if config.push_to_hub:repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=True)else:pipeline.save_pretrained(config.output_dir)if __name__ == "__main__":args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)notebook_launcher(train_loop, args, num_processes=1)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/777112.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uni-app中web-view的使用

1. uni-app中web-view的使用 uni-app中的web-view是一个 web 浏览器组件,可以用来承载网页的容器,uni-app开发的app与web-view实现交互的方式相关简单,应用通过属性message绑定触发事件,然后在web-view的网页向应用 postMessage 触…

IDM工具v6.42.3 便携绿色

软件介绍 Internet Download Manager(IDM)可提升你的下载速度多达5倍,安排下载时程,或续传一半的软件。Internet Download Manager的续传功能可以恢复因为断线、网络问题、计算机宕机甚至无预警的停电导致下传到一半的软件。此程…

遥感卫星影像质量评价指标汇总

1. 主观评价方法 以人为图像的评价者,根据自己的评价尺度和经验对图像质量进行评价。 2. 客观评价方法 1)均方差 2)信噪比 主要用来评价影像经压缩、传输、增强等处理前后的质量变化情况,其本质与均方差类似。 3)方差 反映了图像各个像元灰度相对…

18.字面量

文章目录 一、字面量二、区分技巧三、扩展: /t 制表符 一、字面量 在有些资料,会把字面量说成常量、字面值常量,这种叫法都不是很正确,最正确的叫法还是叫做:字面量。 作用:告诉程序员,数据在…

itextPdf生成pdf简单示例

文章环境 jdk1.8&#xff0c;springboot2.6.13 POM依赖 <dependency><groupId>com.itextpdf</groupId><artifactId>itextpdf</artifactId><version>5.5.13</version></dependency><dependency><groupId>com.ite…

小米还涉足了哪些领域

小米作为一家全球性的移动互联网企业&#xff0c;其业务领域相当广泛&#xff0c;除了核心的智能手机业务外&#xff0c;还涉足了许多其他领域。以下是对小米涉足领域的简要介绍&#xff1a; 智能硬件与IoT平台&#xff1a;小米是全球领先的智能硬件和IoT平台公司&#xff0c;致…

开源 | 如何确保电动自行车软件系统在高并发情况下的稳定性?

开源 | 电动汽车充换电解决方案,从智能硬件到软件系统&#xff0c;全部自主研发 为了确保电动自行车软件系统在高并发情况下的稳定性&#xff0c;可以采取以下措施&#xff1a; 业务分层与系统分级&#xff1a;通过对业务和系统进行分层&#xff0c;可以有效地分散压力&#…

iOS网络抓包工具全解析

摘要 本文将深入探讨iOS平台上常用的网络抓包工具&#xff0c;包括Charles、克魔助手、Thor和Http Catcher&#xff0c;以及通过SSH连接进行抓包的方法。此外&#xff0c;还介绍了克魔开发助手作为iOS应用开发的辅助工具&#xff0c;提供的全方面性能监控和调试功能。 在iOS应…

Dubbo启动流程

Java面试题 Dubbo启动流程 1.服务提供者将服务实例化后注册到注册中心。 2.服务消费者向注册中心订阅所需的服务。 3.注册中心将服务提供者注册的服务地址推送给服务消费者&#xff0c;同时基于长链接推送变更。 4.服务消费者通过代理对象&#xff08;Proxy&#xff09;发起远…

【正版特惠】IDM 永久授权 优惠低至109元!

尽管小编有修改版IDM&#xff0c;但是由于软件太好用了&#xff0c;很多同学干脆就直接购买了正版&#xff0c;现在正版也不贵&#xff0c;并且授权码绑定自己的邮箱&#xff0c;直接官方下载激活&#xff0c;无需其他的绿化修改之类的操作&#xff0c;不喜欢那么麻烦的&#x…

ASTM D7032-21 木塑地板、踏板、围栏和扶手检测

木塑复合材料是国内外近年兴起的一类新型复合材料&#xff0c;由聚乙烯&#xff0c;聚丙烯&#xff0c;聚氯乙烯&#xff0c;木粉&#xff0c;稻壳&#xff0c;秸秆等材料经过挤压&#xff0c;模压&#xff0c;注塑等成型工艺而生产出来的板材或者型材。主要用于地板&#xff0…

Java关键字深度剖析:final, finally, finalize

在Java的世界里&#xff0c;final、finally和finalize听起来非常相似&#xff0c;但它们在Java编程中扮演着截然不同的角色。本文将详细解析这三个关键字的用途、区别&#xff0c;并通过具体的Java代码示例来揭示它们在实际编程中的应用。让我们一探究竟&#xff0c;这三个“终…

react native hooks 如何避免重复请求

在React Native中使用Hooks时&#xff0c;为了避免重复发送网络请求&#xff0c;你可以采取以下几个方法&#xff1a; 使用 useRef 存储最新请求标识或结果&#xff1a; 可以创建一个 useRef 用来存储上一次请求的标识&#xff08;如请求的URL加上请求参数的哈希值&#xff09;…

what is 小程序?小程序有哪些优点及好处

目录 前言 打开小程序的方法有三种: 小程序的和原生 APP 的区别? 优点:

【概率论与数理统计】Chapter2 随机变量及其分布

随机变量与分布函数 随机变量 随机变量&#xff1a;一个随机变量是对随机现象可能的结果的一种数学抽象 分布函数 分布函数&#xff1a; X为随机变量&#xff0c; F ( x ) F(x) F(x)定义为&#xff1a; F ( x ) P ( X ≤ x ) F(x) P(X \leq x) F(x)P(X≤x) 定义域&#…

基于Python实现多功能翻译助手(下)

为了将上述步骤中的功能增强与扩展具体化为代码&#xff0c;我们将实现翻译历史记录功能、翻译选项配置以及UI的改进。 翻译历史记录功能 import json # 假设有一个用于存储历史记录的json文件 HISTORY_FILE translation_history.json # 初始化历史记录列表 translati…

OpenHarmony实战开发-List组件的使用之设置项

介绍 在本篇CodeLab中&#xff0c;我们将使用List组件、Toggle组件以及Router接口&#xff0c;实现一个简单的设置页&#xff0c;点击将跳转到对应的详细设置页面。效果图如下&#xff1a; 相关概念 CustomDialog&#xff1a;CustomDialog装饰器用于装饰自定义弹窗。List&…

Java 多态、包、final、权限修饰符、静态代码块

多态 Java多态是指一个对象可以具有多种形态。它是面向对象编程的一个重要特性&#xff0c;允许子类对象可以被当作父类对象使用。多态的实现主要依赖于继承、接口和方法重写。 在Java中&#xff0c;多态的实现主要通过以下两种方式&#xff1a; 继承&#xff1a;子类继承父类…

C++从入门到精通——命名空间

命名空间 前言一、命名空间引例什么是命名空间 二、命名空间定义正常的命名空间定义嵌套的命名空间多个相同名称的命名空间 三、命名空间使用加命名空间名称及作用域限定符使用using将命名空间中某个成员引入使用using namespace 命名空间名称引用引用命名空间和引用头文件有什…

Unity PS5开发 天坑篇 之 URP管线与HDRP管线部署流程以及出包介绍04

目录 一, URP管线、HDRP管线下的Unity项目部署 1. PS5开发论坛关于Unity可支持的版本说明: 2. URP管线下的项目与部署 2.1 Build PS5 URP Project 2.2 运行画面 3. HDRP管线下的项目与部署 3.1 附上可以运行的画面: 4. PS5打包方式介绍 4.1 PC串流调试模式: Build Typ…