图解Kafka架构学习笔记(三)

准备Kafka环境

这里推荐使用Docker Compose快速搭建一套本地开发环境。

以下docker-compose.yml文件用来搭建一套单节点zookeeper和单节点kafka环境,并且在8080端口提供kafka-ui管理界面。

version: '2.1'services:zoo1:image: confluentinc/cp-zookeeper:7.3.2hostname: zoo1container_name: zoo1ports:- "2181:2181"environment:ZOOKEEPER_CLIENT_PORT: 2181ZOOKEEPER_SERVER_ID: 1ZOOKEEPER_SERVERS: zoo1:2888:3888kafka1:image: confluentinc/cp-kafka:7.3.2hostname: kafka1container_name: kafka1ports:- "9092:9092"- "29092:29092"- "9999:9999"environment:KAFKA_ADVERTISED_LISTENERS: INTERNAL://kafka1:19092,EXTERNAL://${DOCKER_HOST_IP:-127.0.0.1}:9092,DOCKER://host.docker.internal:29092KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT,DOCKER:PLAINTEXTKAFKA_INTER_BROKER_LISTENER_NAME: INTERNALKAFKA_ZOOKEEPER_CONNECT: "zoo1:2181"KAFKA_BROKER_ID: 1KAFKA_LOG4J_LOGGERS: "kafka.controller=INFO,kafka.producer.async.DefaultEventHandler=INFO,state.change.logger=INFO"KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1KAFKA_JMX_PORT: 9999KAFKA_JMX_HOSTNAME: ${DOCKER_HOST_IP:-127.0.0.1}KAFKA_AUTHORIZER_CLASS_NAME: kafka.security.authorizer.AclAuthorizerKAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: "true"depends_on:- zoo1kafka-ui:container_name: kafka-uiimage: provectuslabs/kafka-ui:latestports:- 8080:8080depends_on:- kafka1environment:DYNAMIC_CONFIG_ENABLED: "TRUE"

参考资料

  • https://github.com/conduktor/kafka-stack-docker-compose
  • https://github.com/provectus/kafka-ui

将上述docker-compose.yml文件在本地保存,在同一目录下执行以下命令启动容器。

docker-compose up -d

如果快速启动的话,那么可以参考docker的方式

docker run -it -p 8080:8080 -e DYNAMIC_CONFIG_ENABLED=true provectuslabs/kafka-ui

容器启动后,使用浏览器打开127.0.0.1:8080 即可看到如下kafka-ui界面。

在这里插入图片描述
点击页面右侧的“Configure new cluster”按钮,配置kafka服务连接信息。

在这里插入图片描述
填写完信息后,点击页面下方的“Submit”按钮提交即可。

在这里插入图片描述


安装kafka-go

执行以下命令下载 kafka-go依赖。

go get github.com/segmentio/kafka-go

注意:kafka-go 需要 Go 1.15或更高版本。

kafka-go使用指南

kafka-go 提供了两套与Kafka交互的API。

  • 低级别( low-level):基于与 Kafka 服务器的原始网络连接实现。
  • 高级别(high-level):对于常用读写操作封装了一套更易用的API。

通常建议直接使用高级别的交互API

Connection
Conn 类型是 kafka-go 包的核心。它代表与 Kafka broker之间的连接。基于它实现了一套与Kafka交互的低级别 API。

发送消息(生产者)

下面是连接至Kafka之后,使用Conn发送消息的代码示例。

// writeByConn 基于Conn发送消息
func writeByConn() {topic := "my-topic"partition := 0// 连接至Kafka集群的Leader节点conn, err := kafka.DialLeader(context.Background(), "tcp", "localhost:9092", topic, partition)if err != nil {log.Fatal("failed to dial leader:", err)}// 设置发送消息的超时时间conn.SetWriteDeadline(time.Now().Add(10 * time.Second))// 发送消息_, err = conn.WriteMessages(kafka.Message{Value: []byte("one!")},kafka.Message{Value: []byte("two!")},kafka.Message{Value: []byte("three!")},)if err != nil {log.Fatal("failed to write messages:", err)}// 关闭连接if err := conn.Close(); err != nil {log.Fatal("failed to close writer:", err)}
}

消费消息(消费者)

// readByConn 连接至kafka后接收消息
func readByConn() {// 指定要连接的topic和partitiontopic := "my-topic"partition := 0// 连接至Kafka的leader节点conn, err := kafka.DialLeader(context.Background(), "tcp", "localhost:9092", topic, partition)if err != nil {log.Fatal("failed to dial leader:", err)}// 设置读取超时时间conn.SetReadDeadline(time.Now().Add(10 * time.Second))// 读取一批消息,得到的batch是一系列消息的迭代器batch := conn.ReadBatch(10e3, 1e6) // fetch 10KB min, 1MB max// 遍历读取消息b := make([]byte, 10e3) // 10KB max per messagefor {n, err := batch.Read(b)if err != nil {break}fmt.Println(string(b[:n]))}// 关闭batchif err := batch.Close(); err != nil {log.Fatal("failed to close batch:", err)}// 关闭连接if err := conn.Close(); err != nil {log.Fatal("failed to close connection:", err)}
}

使用batch.Read更高效一些,但是需要根据消息长度选择合适的buffer(上述代码中的b),如果传入的buffer太小(消息装不下)就会返回io.ErrShortBuffer错误。

如果不考虑内存分配的效率问题,也可以按以下代码使用batch.ReadMessage读取消息。

for {msg, err := batch.ReadMessage()if err != nil {break}fmt.Println(string(msg.Value))
}

在这里插入图片描述

创建topic

Kafka关闭自动创建topic的设置时,可按如下方式创建topic

// createTopicByConn 创建topic
func createTopicByConn() {// 指定要创建的topic名称topic := "my-topic"// 连接至任意kafka节点conn, err := kafka.Dial("tcp", "localhost:9092")if err != nil {panic(err.Error())}defer conn.Close()// 获取当前控制节点信息controller, err := conn.Controller()if err != nil {panic(err.Error())}var controllerConn *kafka.Conn// 连接至leader节点controllerConn, err = kafka.Dial("tcp", net.JoinHostPort(controller.Host, strconv.Itoa(controller.Port)))if err != nil {panic(err.Error())}defer controllerConn.Close()topicConfigs := []kafka.TopicConfig{{Topic:             topic,NumPartitions:     1,ReplicationFactor: 1,},}// 创建topicerr = controllerConn.CreateTopics(topicConfigs...)if err != nil {panic(err.Error())}
}

通过非leader节点连接leader节点

下面的示例代码演示了如何通过已有的非leader节点的Conn,连接至 leader节点

conn, err := kafka.Dial("tcp", "localhost:9092")
if err != nil {panic(err.Error())
}
defer conn.Close()
// 获取当前控制节点信息
controller, err := conn.Controller()
if err != nil {panic(err.Error())
}
var connLeader *kafka.Conn
connLeader, err = kafka.Dial("tcp", net.JoinHostPort(controller.Host, strconv.Itoa(controller.Port)))
if err != nil {panic(err.Error())
}
defer connLeader.Close()

上面的代码用于通过 Kafka 协议创建一个名为 “my-topic” 的主题(topic)。让我解释一下代码的主要部分:

  1. func createTopicByConn(): 这是一个函数定义,用于创建主题的连接。

  2. topic := "my-topic": 指定要创建的主题名称为 “my-topic”。

  3. conn, err := kafka.Dial("tcp", "localhost:9092"): 通过 kafka.Dial 方法连接到 Kafka 集群中的任意一个节点。这里使用了 tcp 协议连接本地主机的 9092 端口。如果连接失败,则会产生一个错误,并且代码会中止执行。

  4. defer conn.Close(): 在函数结束时关闭连接,确保资源被释放。

  5. controller, err := conn.Controller(): 通过连接对象获取当前控制器(controller)节点的信息。Kafka 集群有一个控制器节点,负责集群中的元数据管理和协调工作。

  6. controllerConn, err = kafka.Dial("tcp", net.JoinHostPort(controller.Host, strconv.Itoa(controller.Port))): 根据获取到的控制器节点信息,再次通过 kafka.Dial 方法连接到控制器节点。这里使用了 net.JoinHostPort 函数将主机名和端口号合并为一个字符串。如果连接失败,则会产生一个错误,并且代码会中止执行。

  7. defer controllerConn.Close(): 同样在函数结束时关闭连接,确保资源被释放。

  8. topicConfigs: 定义一个 kafka.TopicConfig 类型的切片,其中包含要创建的主题的配置信息。在这里,只有一个元素,即 “my-topic” 主题的配置。

  9. err = controllerConn.CreateTopics(topicConfigs...): 调用 controllerConn 连接对象的 CreateTopics 方法来创建主题。该方法接受一个或多个 kafka.TopicConfig 类型的参数,用于指定要创建的主题的配置。如果创建失败,则会产生一个错误,并且代码会中止执行。

  10. panic(err.Error()): 如果发生了错误,代码会使用 panic 函数中止执行,并打印出错误信息。

总体来说,这段代码的作用是连接到 Kafka 集群中的控制器节点,然后通过控制器节点创建一个名为 "my-topic" 的主题。

获取topic列表

conn, err := kafka.Dial("tcp", "localhost:9092")
if err != nil {panic(err.Error())
}
defer conn.Close()partitions, err := conn.ReadPartitions()
if err != nil {panic(err.Error())
}m := map[string]struct{}{}
// 遍历所有分区取topic
for _, p := range partitions {m[p.Topic] = struct{}{}
}
for k := range m {fmt.Println(k)
}

上面的代码比较简单。

Reader

Reader是由 kafka-go 包提供的另一个概念,对于从单个主题-分区(topic-partition)消费消息这种典型场景,使用它能够简化代码。Reader 还实现了自动重连和偏移量管理,并支持使用 Context 支持异步取消和超时的 API

注意: 当进程退出时,必须在 Reader 上调用 Close()Kafka服务器需要一个优雅的断开连接来阻止它继续尝试向已连接的客户端发送消息。如果进程使用 SIGINT (shell 中的 Ctrl-C)或 SIGTERM (如 docker stopkubernetes start)终止,那么下面给出的示例不会调用 Close()。当同一topic上有新Reader连接时,可能导致延迟(例如,新进程启动或新容器运行)。在这种场景下应使用signal.Notify处理程序在进程关闭时关闭Reader。

消费消息

下面的代码演示了如何使用Reader连接至Kafka消费消息。

// readByReader 通过Reader接收消息
func readByReader() {// 创建Readerr := kafka.NewReader(kafka.ReaderConfig{Brokers:   []string{"localhost:9092", "localhost:9093", "localhost:9094"},Topic:     "topic-A",Partition: 0,MaxBytes:  10e6, // 10MB})r.SetOffset(42) // 设置Offset// 接收消息for {m, err := r.ReadMessage(context.Background())if err != nil {break}fmt.Printf("message at offset %d: %s = %s\n", m.Offset, string(m.Key), string(m.Value))}// 程序退出前关闭Readerif err := r.Close(); err != nil {log.Fatal("failed to close reader:", err)}
}

消费者组

kafka-go支持消费者组,包括broker管理的offset。要启用消费者组,只需在ReaderConfig中指定 GroupID

使用消费者组时,ReadMessage 会自动提交偏移量。

// 创建一个reader,指定GroupID,从 topic-A 消费消息
r := kafka.NewReader(kafka.ReaderConfig{Brokers:  []string{"localhost:9092", "localhost:9093", "localhost:9094"},GroupID:  "consumer-group-id", // 指定消费者组idTopic:    "topic-A",MaxBytes: 10e6, // 10MB
})// 接收消息
for {m, err := r.ReadMessage(context.Background())if err != nil {break}fmt.Printf("message at topic/partition/offset %v/%v/%v: %s = %s\n", m.Topic, m.Partition, m.Offset, string(m.Key), string(m.Value))
}// 程序退出前关闭Reader
if err := r.Close(); err != nil {log.Fatal("failed to close reader:", err)
}

在使用消费者组时会有以下限制:

  • (*Reader).SetOffset 当设置了GroupID时会返回错误
  • (*Reader).Offset 当设置了GroupID时会永远返回 -1
  • (*Reader).Lag 当设置了GroupID时会永远返回 -1
  • (*Reader).ReadLag 当设置了GroupID时会返回错误
  • (*Reader).Stats 当设置了GroupID时会返回一个-1的分区

显式提交

kafka-go 也支持显式提交。当需要显式提交时不要调用 ReadMessage,而是调用 FetchMessage获取消息,然后调用 CommitMessages 显式提交。

自动提交(Autocommit):在调用 ReadMessage 读取消息时,会自动将消费者所消费的消息的偏移量提交到 Kafka,由 Kafka 自动管理偏移量的提交。这种方式简单方便,但是可能会带来一些问题,比如当消费者在处理消息时发生错误,消息可能已经被提交,但实际上消息并没有被成功处理,这样就可能导致数据丢失或重复处理。

显式提交(Explicit commit):在需要提交偏移量时,调用 CommitMessages 显式地提交偏移量。这样可以在消息被成功处理后再提交偏移量,从而确保消息被正确处理。这种方式需要开发者自己管理偏移量的提交,更加灵活,但也需要更多的代码来处理。

ctx := context.Background()
for {// 获取消息m, err := r.FetchMessage(ctx)if err != nil {break}// 处理消息fmt.Printf("message at topic/partition/offset %v/%v/%v: %s = %s\n", m.Topic, m.Partition, m.Offset, string(m.Key), string(m.Value))// 显式提交if err := r.CommitMessages(ctx, m); err != nil {log.Fatal("failed to commit messages:", err)}
}

在消费者组中提交消息时,使用给定主题/分区的最大偏移量确定该分区的提交偏移量值的情况。具体来说,如果通过调用 FetchMessage 获取了单个分区的偏移量为 1、2 和 3 的消息,然后使用偏移量为3的消息调用 CommitMessages,那么该分区的偏移量为 1 和 2 的消息也会被提交。

这种行为的意义在于,Kafka 会将偏移量视为连续的序列。当提交一个偏移量时,Kafka 会将该偏移量之前的所有消息都视为已经被处理。因此,如果使用偏移量为3的消息调用了提交操作,那么偏移量为1和2的消息也会被提交,因为它们在偏移量3之前,已经被消费者处理了。

这种方式确保了消费者组中的所有消费者都会收到相同的消息,并且每个分区的消息都会被处理一次且仅一次,从而确保了消费者组的一致性和正确性。

管理提交间隔

默认情况下,调用CommitMessages将同步向Kafka提交偏移量。为了提高性能,可以在ReaderConfig中设置CommitInterval来定期向Kafka提交偏移。

// 创建一个reader从 topic-A 消费消息
r := kafka.NewReader(kafka.ReaderConfig{Brokers:        []string{"localhost:9092", "localhost:9093", "localhost:9094"},GroupID:        "consumer-group-id",Topic:          "topic-A",MaxBytes:       10e6, // 10MBCommitInterval: time.Second, // 每秒刷新一次提交给 Kafka
})

Writer

Kafka发送消息,除了使用基于Conn的低级APIkafka-go包还提供了更高级别的 Writer 类型。大多数情况下使用Writer即可满足条件,它支持以下特性。

  • 对错误进行自动重试和重新连接
  • 在可用分区之间可配置的消息分布。
  • 向Kafka同步或异步写入消息
  • 使用Context的异步取消。
  • 关闭时清除挂起的消息以支持正常关闭。
  • 在发布消息之前自动创建不存在的topic

发送消息

// 创建一个writer 向topic-A发送消息
w := &kafka.Writer{Addr:         kafka.TCP("localhost:9092", "localhost:9093", "localhost:9094"),Topic:        "topic-A",Balancer:     &kafka.LeastBytes{}, // 指定分区的balancer模式为最小字节分布RequiredAcks: kafka.RequireAll,    // ack模式Async:        true,                // 异步
}err := w.WriteMessages(context.Background(),kafka.Message{Key:   []byte("Key-A"),Value: []byte("Hello World!"),},kafka.Message{Key:   []byte("Key-B"),Value: []byte("One!"),},kafka.Message{Key:   []byte("Key-C"),Value: []byte("Two!"),},
)
if err != nil {log.Fatal("failed to write messages:", err)
}if err := w.Close(); err != nil {log.Fatal("failed to close writer:", err)
}

创建不存在的topic

如果给Writer配置了AllowAutoTopicCreation:true,那么当发送消息至某个不存在的topic时,则会自动创建topic

w := &Writer{Addr:                   kafka.TCP("localhost:9092", "localhost:9093", "localhost:9094"),Topic:                  "topic-A",AllowAutoTopicCreation: true,  // 自动创建topic
}messages := []kafka.Message{{Key:   []byte("Key-A"),Value: []byte("Hello World!"),},{Key:   []byte("Key-B"),Value: []byte("One!"),},{Key:   []byte("Key-C"),Value: []byte("Two!"),},
}var err error
const retries = 3
// 重试3次
for i := 0; i < retries; i++ {ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)defer cancel()err = w.WriteMessages(ctx, messages...)if errors.Is(err, LeaderNotAvailable) || errors.Is(err, context.DeadlineExceeded) {time.Sleep(time.Millisecond * 250)continue}if err != nil {log.Fatalf("unexpected error %v", err)}break
}// 关闭Writer
if err := w.Close(); err != nil {log.Fatal("failed to close writer:", err)
}

写入多个topic

通常,WriterConfig.Topic用于初始化单个topicWriter。通过去掉WriterConfig中的Topic配置,分别设置每条消息的message.topic,可以实现将消息发送至多个topic

w := &kafka.Writer{Addr:     kafka.TCP("localhost:9092", "localhost:9093", "localhost:9094"),//// 注意: 当此处不设置Topic时,后续的每条消息都需要指定Topic//Balancer: &kafka.LeastBytes{},
}err := w.WriteMessages(context.Background(),// 注意: 每条消息都需要指定一个 Topic, 否则就会报错kafka.Message{Topic: "topic-A",Key:   []byte("Key-A"),Value: []byte("Hello World!"),},kafka.Message{Topic: "topic-B",Key:   []byte("Key-B"),Value: []byte("One!"),},kafka.Message{Topic: "topic-C",Key:   []byte("Key-C"),Value: []byte("Two!"),},
)
if err != nil {log.Fatal("failed to write messages:", err)
}if err := w.Close(); err != nil {log.Fatal("failed to close writer:", err)
}

注意:Writer中的TopicMessage中的Topic是互斥的,同一时刻有且只能设置一处。

Balancer

kafka-go实现了多种负载均衡策略。特别是当你从其他Kafka库迁移过来时,你可以按如下说明选择合适的Balancer实现。

Sarama

如果从 sarama 切换过来,并且需要/希望使用相同的算法进行消息分区,则可以使用kafka.Hashkafka.ReferenceHash

kafka.Hash = sarama.NewHashPartitioner
kafka.ReferenceHash = sarama.NewReferenceHashPartitioner
w := &kafka.Writer{Addr:     kafka.TCP("localhost:9092", "localhost:9093", "localhost:9094"),Topic:    "topic-A",Balancer: &kafka.Hash{},
}
librdkafka和confluent-kafka-go
kafka.CRC32Balancer与librdkafka默认的consistent_random策略表现一致。w := &kafka.Writer{Addr:     kafka.TCP("localhost:9092", "localhost:9093", "localhost:9094"),Topic:    "topic-A",Balancer: kafka.CRC32Balancer{},
}

Logging

想要记录Reader/Writer类型的操作,可以在创建时配置日志记录器。

kafka-go中的Logger是一个接口类型。

type Logger interface {Printf(string, ...interface{})
}

并且提供了一个LoggerFunc类型,帮我们实现了Logger接口。

type LoggerFunc func(string, ...interface{})func (f LoggerFunc) Printf(msg string, args ...interface{}) { f(msg, args...) }

Reader

借助kafka.LoggerFunc我们可以自定义一个Logger

// 自定义一个Logger
func logf(msg string, a ...interface{}) {fmt.Printf(msg, a...)fmt.Println()
}r := kafka.NewReader(kafka.ReaderConfig{Brokers:     []string{"localhost:9092", "localhost:9093", "localhost:9094"},Topic:       "q1mi-topic",Partition:   0,Logger:      kafka.LoggerFunc(logf),ErrorLogger: kafka.LoggerFunc(logf),
})

Writer

也可以直接使用第三方日志库,例如下面示例代码中使用了zap日志库。

w := &kafka.Writer{Addr:        kafka.TCP("localhost:9092"),Topic:       "q1mi-topic",Logger:      kafka.LoggerFunc(zap.NewExample().Sugar().Infof),ErrorLogger: kafka.LoggerFunc(zap.NewExample().Sugar().Errorf),
}

参考

https://www.liwenzhou.com/posts/Go/kafka-go/
https://juejin.cn/post/7173314677550612493
https://www.topgoer.com/%E6%95%B0%E6%8D%AE%E5%BA%93%E6%93%8D%E4%BD%9C/go%E6%93%8D%E4%BD%9Ckafka/%E6%93%8D%E4%BD%9Ckafka.html
http://www.randyfield.cn/post/2021-05-05-go-kafka/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/768364.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FPGA 以太网传输ov5640视频

1 实验任务 使用 DFZU4EV MPSoC 开发板及双目 OV5640 摄像头其中一个摄像头实现图像采集&#xff0c;并通过开发板上的以太网接口发送给上位机实时显示。 2 系统框架 时钟模块用于为 I2C 驱动模块、以太网顶层模块和开始传输控制模块提供驱动时钟&#xff1b;I2C 驱动模块…

Python Flask 自定义错误页面

新建templates/404.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body> <img src"../static/a123.png" alt"" width"…

基于spring boot的个人博客系统的设计与实现(带源码)

随着国内市场经济这几十年来的蓬勃发展&#xff0c;突然遇到了从国外传入国内的互联网技术&#xff0c;互联网产业从开始的群众不信任&#xff0c;到现在的离不开&#xff0c;中间经历了很多挫折。本次开发的个人博客系统&#xff0c;有管理员&#xff0c;用户&#xff0c;博主…

使能 Linux 内核自带的 FlexCAN 驱动

一. 简介 前面一篇文章学习了 ALPHA开发板修改CAN的设备树节点信息&#xff0c;并加载测试过设备树文件&#xff0c;文件如下&#xff1a; ALPHA开发板修改CAN的设备树节点信息-CSDN博客 本文是学习使能 IMX6ULL的 CAN驱动&#xff0c;也就是通过内核配置来实现。 二. 使能…

【数据结构】归并排序(用递归)

大家好&#xff0c;我是苏貝&#xff0c;本篇博客带大家了解归并排序&#xff0c;如果你觉得我写的还不错的话&#xff0c;可以给我一个赞&#x1f44d;吗&#xff0c;感谢❤️ 目录 一. 基本思想二. 归并排序代码 一. 基本思想 在讲归并排序之前&#xff0c;问问自己&#x…

3月份的倒数第二个周末有感

坐在图书馆的那一刻&#xff0c;忽然感觉时间的节奏开始放缓。今天周末因为我们两都有任务需要完成&#xff0c;所以就选了嘉定图书馆&#xff0c;不得不说嘉定新城远香湖附近的图书馆真的很有感觉。然我不经意回想起学校的时光&#xff0c;那是多么美好且短暂的时光。凝视着窗…

LeetCode 热题 100 | 堆(三)

目录 1 队列 - v2.0 2 295. 数据流的中位数 2.1 解题思路 2.2 举例说明 2.3 维持队列 2.4 求中位数 2.5 完整代码 菜鸟做题&#xff0c;语言是 C 1 队列 - v2.0 排序规则果然和名字是反过来的&#xff1a; // 大根堆 priority_queue<int, vector<int>…

信号处理与分析——matlab记录

一、绘制信号分析频谱 1.代码 % 生成测试信号 Fs 3000; % 采样频率 t 0:1/Fs:1-1/Fs; % 时间向量 x1 1*sin(2*pi*50*t) 1*sin(2*pi*60*t); % 信号1 x2 1*sin(2*pi*150*t)1*sin(2*pi*270*t); % 信号2% 绘制信号图 subplot(2,2,1); plot(t,x1); title(信号x1 1*sin(…

Kotlin的lateinit关键词

Kotlin的lateinit关键词 lateinit&#xff0c;延迟初始化。有时&#xff0c;并不能定义一个变量或对象值为空&#xff0c;而也没办法在对象或变量在定义声明时就为它赋值初始化&#xff0c;那么这时就需要用到Kotlin提供的延迟初始化lateinit。比如&#xff0c;有些依赖注入框架…

银行监管报送系统介绍(六):客户风险数据报送系统

【概念定义】 银监会决定从2013年起实行新版客户风险统计制度&#xff0c;对各政策性银行、国有商业银行、股份制商业银行进行客户信息汇总统计。 客户风险统计信息&#xff0c;是指新版客户风险统计报送信 息。客户风险统计报送信息包括但不限于对公及同业客户授信和 表内外业…

Gogs - 一款极易搭建的自助 Git 服务

Gogs - 一款极易搭建的自助 Git 服务 1. 使用文档References Gogs https://gogs.io/ https://github.com/gogs/gogs Gogs (/gɑgz/) 项目旨在打造一个以最简便的方式搭建简单、稳定和可扩展的自助 Git 服务。使用 Go 语言开发使得 Gogs 能够通过独立的二进制分发&#xff0c;并…

【循环神经网络rnn】一篇文章讲透

目录 引言 二、RNN的基本原理 代码事例 三、RNN的优化方法 1 长短期记忆网络&#xff08;LSTM&#xff09; 2 门控循环单元&#xff08;GRU&#xff09; 四、更多优化方法 1 选择合适的RNN结构 2 使用并行化技术 3 优化超参数 4 使用梯度裁剪 5 使用混合精度训练 …

C++(类和对象)2

36 友元 1&#xff09;全局函数 全局函数做优元&#xff0c;就是把全局函数复制到类中&#xff0c;加个friend 同上&#xff0c;将class GoodGay前写个friend&#xff0c;就可以访问了 当然&#xff0c;还有成员函数做友元 39 运算符重载-加号 普通加号只知道两个整型撒的…

jetcache 2级缓存模式实现批量清除

需求 希望能够实现清理指定对象缓存的方法&#xff0c;例如缓存了User表&#xff0c;当User表巨大时&#xff0c;通过id全量去清理不现实&#xff0c;耗费资源也巨大。因此需要能够支持清理指定本地和远程缓存的批量方法。 分析 查看jetcache生成的cache接口&#xff0c;并没…

计算机网络⑧ —— IP地址

IP位于TCP/IP参考模型的第三层&#xff0c;也就是⽹络层 ⽹络层的主要作⽤&#xff1a;实现主机与主机之间的通信&#xff0c;也叫点对点通信 问题1&#xff1a;⽹络层(IP)与数据链路层(MAC)有什么关系呢&#xff1f; MAC的作⽤&#xff1a;实现直连的两个设备之间通信。IP的…

Oracle参数文件详解

1、参数文件的作用 参数文件用于存放实例所需要的初始化参数&#xff0c;因为多数初始化参数都具有默认值&#xff0c;所以参数文件实际存放了非默认的初始化参数。 2、参数文件类型 1&#xff09;服务端参数文件&#xff0c;又称为 spfile 二进制的文件&#xff0c;命名规则…

Django 三板斧、静态文件、request方法

【一】三板斧 【1】HttpResponse &#xff08;1&#xff09;介绍 HttpResponse是Django中的一个类&#xff0c;用于构建HTTP响应对象。它允许创建并返回包含特定内容的HTTP响应。 &#xff08;2&#xff09;使用 导入HttpResponse类 from django.http import HttpResponse创…

八股文(1)

管道 匿名管道和命名管道 命名管道的使用是什么&#xff1f;在linux系统如何实现 命名管道&#xff08;Named Pipe&#xff09;&#xff0c;也称为FIFO&#xff08;First In First Out&#xff09;&#xff0c;是一种在UNIX和Linux系统中用于进程间通信&#xff08;IPC&…

springboot实现简单的excel导入

前文其实已经实现了较为复杂的excel导入了&#xff0c;这篇博客就给大家介绍简单的excel表格导入方法 以下是我的excel表格&#xff1a; 以下是我的实体类&#xff1a; package com.datapojo.bean;import com.baomidou.mybatisplus.annotation.IdType; import com.baomidou.m…

直接插入排序 希尔排序 选择排序 堆排序

目录 一. 排序的概念及应用 1.1 排序的概念 1.2 常见的排序算法 二. 常见排序算法的实现(从小到大排序) 2.1 插入排序 2.1.1基本思想&#xff1a; 2.1.2 直接插入排序 2.1.3 希尔排序( 缩小增量排序) 2.2 选择排序 2.2.1基本思想&#xff1a; 2.2.2 直接选择排序: 2…