完整项目链接:GitHub - xfliu1998/kinectProject
Kinect V2相机标定
使用张正友标定法对Kinect V2相机标定。原理及参考代码见以下链接:
- 单目相机标定实现–张正友标定法:https://blog.csdn.net/weixin_43763292/article/details/128546103?spm=1001.2014.3001.5506
- python利用opencv进行相机标定(完全版):https://blog.csdn.net/dgut_guangdian/article/details/107467070?spm=1001.2014.3001.5506
- Kinect2.0-Python调用-PyKinect2:https://blog.csdn.net/zcz0101/article/details/115718427?spm=1001.2014.3001.5506
- 导入需要的包
import os
import time
import datetime
import glob as gb
import h5py
import keyboard
import cv2
import numpy as np
from utils.calibration import Calibrator
from utils.kinect import Kinect
- 拍摄不同角度的标定图。取照要求:不同角度不同位置拍摄(10-20)张标定图,棋盘格的视野在整张图的1/4~2/3左右。以下函数默认拍摄20张图,按空格键拍摄照片,按q键结束拍摄,拍的标定图会保存到指定路径。
def get_chess_image(image_num=20):out_path = './data/chess/'if not os.path.exists(out_path):os.makedirs(out_path)camera = cv2.VideoCapture(0)i = 0while 1:(grabbed, img) = camera.read()cv2.imshow('img', img)if cv2.waitKey(1) & keyboard.is_pressed('space'): # press space to save an imagei += 1firename = str(f'{out_path}img{str(i)}.jpg')cv2.imwrite(firename, img)print('write: ', firename)if cv2.waitKey(1) & 0xFF == ord('q') or i == image_num: # press q to finishbreak
- 对相机标定。函数将相机的内参和畸变系数输出至指定路径,同时可以获得每张标定图的外参矩阵。函数需要用到标定类,代码在utils包中。
def camera_calibrator(shape_inner_corner=(11, 8), size_grid=0.025):''':param shape_inner_corner: checkerboard size = 12*9:param size_grid: the length of the sides of the checkerboard = 25mm'''chess_dir = "./data/chess"out_path = "./data/dedistortion/chess"if not os.path.exists(out_path):os.makedirs(out_path)# create calibratorcalibrator = Calibrator(chess_dir, shape_inner_corner, size_grid)# calibrate the cameramat_intri, coff_dis = calibrator.calibrate_camera()np.save('./data/intrinsic_matrix.npy', mat_intri)np.save('./data/distortion_cofficients.npy', coff_dis)print("intrinsic matrix: \n {}".format(mat_intri))print("distortion cofficients: \n {}".format(coff_dis)) # (k_1, k_2, p_1, p_2, k_3)# dedistortioncalibrator.dedistortion(chess_dir, out_path)return mat_intri, coff_dis
import os
import glob
import cv2
import numpy as npclass Calibrator(object):def __init__(self, img_dir, shape_inner_corner, size_grid, visualization=True):"""--parameters--img_dir: the directory that save images for calibration, strshape_inner_corner: the shape of inner corner, Array of int, (h, w)size_grid: the real size of a grid in calibrator, floatvisualization: whether visualization, bool"""self.img_dir = img_dirself.shape_inner_corner = shape_inner_cornerself.size_grid = size_gridself.visualization = visualizationself.mat_intri = None # intrinsic matrixself.coff_dis = None # cofficients of distortion# create the conner in world spacew, h = shape_inner_corner# cp_int: save the coordinate of corner points in world space in 'int' form. like (0,0,0), ...., (10,7,0)cp_int = np.zeros((w * h, 3), np.float32)cp_int[:, :2] = np.mgrid[0:w, 0:h].T.reshape(-1, 2)# cp_world: corner point in world space, save the coordinate of corner points in world spaceself.cp_world = cp_int * size_grid# imagesself.img_paths = []for extension in ["jpg", "png", "jpeg"]:self.img_paths += glob.glob(os.path.join(img_dir, "*.{}".format(extension)))assert len(self.img_paths), "No images for calibration found!"def calibrate_camera(self):w, h = self.shape_inner_corner# criteria: only for subpix calibration, which is not used here# criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)points_world = [] # the points in world spacepoints_pixel = [] # the points in pixel space (relevant to points_world)for img_path in self.img_paths:img = cv2.imread(img_path)gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# find the corners, cp_img: corner points in pixel spaceret, cp_img = cv2.findChessboardCorners(gray_img, (w, h), None)# if ret is True, saveif ret:# cv2.cornerSubPix(gray_img, cp_img, (11,11), (-1,-1), criteria)points_world.append(self.cp_world)points_pixel.append(cp_img)# view the cornersif self.visualization:cv2.drawChessboardCorners(img, (w, h), cp_img, ret)_, img_name = os.path.split(img_path)cv2.imwrite(os.path.join(self.img_dir, f"dedistortion/coner_detect/{img_name}"), img)cv2.imshow('FoundCorners', img)cv2.waitKey(500)# calibrate the cameraret, mat_intri, coff_dis, v_rot, v_trans = cv2.calibrateCamera(points_world, points_pixel, gray_img.shape[::-1], None, None)# print("ret: {}".format(ret))# print("intrinsic matrix: \n {}".format(mat_intri))# # in the form of (k_1, k_2, p_1, p_2, k_3)# print("distortion cofficients: \n {}".format(coff_dis))# print("rotation vectors: \n {}".format(v_rot))# print("translation vectors: \n {}".format(v_trans))# calculate the error of reprojecttotal_error = 0for i in range(len(points_world)):points_pixel_repro, _ = cv2.projectPoints(points_world[i], v_rot[i], v_trans[i], mat_intri, coff_dis)error = cv2.norm(points_pixel[i], points_pixel_repro, cv2.NORM_L2) / len(points_pixel_repro)total_error += error# print("Average error of reproject: {}".format(total_error / len(points_world)))self.mat_intri = mat_intriself.coff_dis = coff_disreturn mat_intri, coff_disdef dedistortion(self, img_dir, save_dir):if not os.path.exists(save_dir):os.makedirs(save_dir)# if not calibrated, calibrate firstif self.mat_intri is None:assert self.coff_dis is Noneself.calibrate_camera()img_paths = []for extension in ["jpg", "png", "jpeg"]:img_paths += glob.glob(os.path.join(img_dir, "*.{}".format(extension)))for img_path in img_paths:_, img_name = os.path.split(img_path)img = cv2.imread(img_path)h, w = img.shape[0], img.shape[1]newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.mat_intri, self.coff_dis, (w, h), 1, (w, h))dst = cv2.undistort(img, self.mat_intri, self.coff_dis, None, newcameramtx)# clip the data# x, y, w, h = roi# dst = dst[y:y+h, x:x+w]cv2.imwrite(os.path.join(save_dir, img_name), dst)# print("Dedistorted images have been saved to: {}".format(save_dir))
Kinect V2相机获取图像及图像预处理
- 使用Kinect V2相机拍摄RGB-D数据流。设定拍摄目标的名字
name
,运行函数后延时1s开始拍摄,按ESC
键结束拍摄。拍摄的RGB-D数据首先保存到指定路径下的h5文件中,同时输出拍摄的时间。拍摄Kinect图像需要用到Kinect类,代码在utils包中。
def capture_image(name):file_name = './data/h5/' + name + '.h5'if os.path.exists(file_name):os.remove(file_name)open(file_name, "x")f = h5py.File(file_name, 'a')i = 1kinect = Kinect()time.sleep(1)s = time.time()while 1:data = kinect.get_the_data_of_color_depth_infrared_image()# save dataf.create_dataset(str(i), data=data[0])f.create_dataset(str(i+1), data=data[1])i += 2cv2.imshow('kinect', data[0])cv2.waitKey(1)if keyboard.is_pressed('esc'): # press ESC to exitbreakprint('record time: %f s' % (time.time() - s))return file_name
from pykinect2 import PyKinectV2
from pykinect2.PyKinectV2 import *
from pykinect2 import PyKinectRuntime
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import ctypes
import math
import time
import copy
import keyboardclass Kinect(object):def __init__(self):self._kinect = PyKinectRuntime.PyKinectRuntime(PyKinectV2.FrameSourceTypes_Color | PyKinectV2.FrameSourceTypes_Depth | PyKinectV2.FrameSourceTypes_Infrared)self.color_frame = Noneself.depth_frame = Noneself.infrared_frame = Noneself.w_color = 1920self.h_color = 1080self.w_depth = 512self.h_depth = 424self.csp_type = _ColorSpacePoint * np.int(self.w_color * self.h_color)self.csp = ctypes.cast(self.csp_type(), ctypes.POINTER(_DepthSpacePoint))self.color = Noneself.depth = Noneself.infrared = Noneself.first_time = True# Copying this image directly in python is not as efficient as getting another frame directly from C++"""Get the latest color data"""def get_the_last_color(self):if self._kinect.has_new_color_frame():# the obtained image data is 2d and needs to be converted to the desired formatframe = self._kinect.get_last_color_frame()# return 4 channels, and one channel is not registeredgbra = frame.reshape([self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4])# remove color image data, the default is that the mirror image needs to be flippedcolor_frame = gbra[..., :3][:, ::-1, :]return color_frame"""Get the latest depth data"""def get_the_last_depth(self):if self._kinect.has_new_depth_frame():frame = self._kinect.get_last_depth_frame()depth_frame_all = frame.reshape([self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width])self.depth_frame = depth_frame_all[:, ::-1]return self.depth_frame"""Get the latest infrared data"""def get_the_last_infrared(self, Infrared_threshold = 16000):if self._kinect.has_new_infrared_frame():frame = self._kinect.get_last_infrared_frame()image_infrared_all = frame.reshape([self._kinect.infrared_frame_desc.Height, self._kinect.infrared_frame_desc.Width])# image_infrared_all[image_infrared_all > Infrared_threshold] = 0# image_infrared_all = image_infrared_all / Infrared_threshold * 255self.infrared_frame = image_infrared_all[:, ::-1]return self.infrared_frame"""Match the depth pixels into the color image"""def map_depth_points_to_color_points(self, depth_points):depth_points = [self.map_depth_point_to_color_point(x) for x in depth_points]return depth_pointsdef map_depth_point_to_color_point(self, depth_point):global validdepth_point_to_color = copy.deepcopy(depth_point)n = 0while 1:self.get_the_last_depth()self.get_the_last_color()color_point = self._kinect._mapper.MapDepthPointToColorSpace(_DepthSpacePoint(511 - depth_point_to_color[1], depth_point_to_color[0]), self.depth_frame[depth_point_to_color[0], 511 - depth_point_to_color[1]])if math.isinf(float(color_point.y)):n += 1if n >= 10000:color_point = [0, 0]breakelse:color_point = [np.int0(color_point.y), 1920 - np.int0(color_point.x)] # image coordinates, human eye Anglevalid += 1print('valid number:', valid)breakreturn color_point"""Map an array of color pixels into a depth image"""def map_color_points_to_depth_points(self, color_points):self.get_the_last_depth()self.get_the_last_color()self._kinect._mapper.MapColorFrameToDepthSpace(ctypes.c_uint(512 * 424), self._kinect._depth_frame_data, ctypes.c_uint(1920 * 1080), self.csp)depth_points = [self.map_color_point_to_depth_point(x, True) for x in color_points]return depth_pointsdef map_color_point_to_depth_point(self, color_point, if_call_flg=False):n = 0color_point_to_depth = copy.deepcopy(color_point)color_point_to_depth[1] = 1920 - color_point_to_depth[1]while 1:self.get_the_last_depth()self.get_the_last_color()if not if_call_flg:self._kinect._mapper.MapColorFrameToDepthSpace(ctypes.c_uint(512 * 424), self._kinect._depth_frame_data, ctypes.c_uint(1920 * 1080), self.csp)if math.isinf(float(self.csp[color_point_to_depth[0] * 1920 + color_point_to_depth[1] - 1].y)) \or np.isnan(self.csp[color_point_to_depth[0] * 1920 + color_point_to_depth[1] - 1].y):n += 1if n >= 10000:print('Color mapping depth, invalid points')depth_point = [0, 0]breakelse:try:depth_point = [np.int0(self.csp[color_point_to_depth[0] * 1920 + color_point_to_depth[1] - 1].y),np.int0(self.csp[color_point_to_depth[0] * 1920 + color_point_to_depth[1] - 1].x)]except OverflowError as e:print('Color mapping depth, invalid points')depth_point = [0, 0]breakdepth_point[1] = 512 - depth_point[1]return depth_point"""Get the latest color and depth images as well as infrared images"""def get_the_data_of_color_depth_infrared_image(self):time_s = time.time()if self.first_time:while 1:n = 0self.color = self.get_the_last_color()n += 1self.depth = self.get_the_last_depth()n += 1if self._kinect.has_new_infrared_frame():frame = self._kinect.get_last_infrared_frame()image_infrared_all = frame.reshape([self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width])self.infrared = image_infrared_all[:, ::-1]n += 1t = time.time() - time_sif n == 3:self.first_time = Falsebreakelif t > 5:print('No image data is obtained, please check that the Kinect2 connection is normal')breakelse:if self._kinect.has_new_color_frame():frame = self._kinect.get_last_color_frame()gbra = frame.reshape([self._kinect.color_frame_desc.Height, self._kinect.color_frame_desc.Width, 4])gbr = gbra[:, :, :3][:, ::-1, :]self.color = gbrif self._kinect.has_new_depth_frame():frame = self._kinect.get_last_depth_frame()image_depth_all = frame.reshape([self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width])depth = image_depth_all[:, ::-1]self.depth = depthif self._kinect.has_new_infrared_frame():frame = self._kinect.get_last_infrared_frame()image_infrared_all = frame.reshape([self._kinect.depth_frame_desc.Height, self._kinect.depth_frame_desc.Width])self.infrared = image_infrared_all[:, ::-1]return self.color, self.depth, self.infraredif __name__ == '__main__':i = 1kinect = Kinect()s = time.time()while 1:data = kinect.get_the_data_of_color_depth_infrared_image()img = data[0]mat_intri = np.load('./data/intrinsic_matrix.npy')coff_dis = np.load('./data/distortion_cofficients.npy')h, w = img.shape[0], img.shape[1]newcameramtx, roi = cv.getOptimalNewCameraMatrix(mat_intri, coff_dis, (w, h), 1, (w, h))dst = cv.undistort(img, mat_intri, coff_dis, None, newcameramtx)dst = cv.cvtColor(dst, cv.COLOR_BGR2RGB)plt.imshow(dst/255)plt.show()"""# store the mapping matrix in an npy filecolor_points = np.zeros((512 * 424, 2), dtype=np.int) # valid number: 207662k = 0for i in range(424):for j in range(512):color_points[k] = [i, j]k += 1depth_map_color = kinect.map_depth_points_to_color_points(color_points)# turn to 0 that is not in the mapping rangedepth_map_color[..., 0] = np.where(depth_map_color[..., 0] >= 1080, 0, depth_map_color[..., 0])depth_map_color[..., 0] = np.where(depth_map_color[..., 0] < 0, 0, depth_map_color[..., 0])depth_map_color[..., 1] = np.where(depth_map_color[..., 1] >= 1920, 0, depth_map_color[..., 1])depth_map_color[..., 1] = np.where(depth_map_color[..., 1] < 0, 0, depth_map_color[..., 1])# interpolated fill 0 valueszeros = np.array(list(set(np.where(depth_map_color == 0)[0])))for zero in zeros:if zero < 40 * 512 or zero > 360 * 512:continuej = 1while depth_map_color[zero - j].any() == 0 or depth_map_color[zero + j].any() == 0:j += 1depth_map_color[zero][0] = (depth_map_color[zero - j][0] + depth_map_color[zero + j][0]) // 2depth_map_color[zero][1] = (depth_map_color[zero - j][1] + depth_map_color[zero + j][1]) // 2np.save('full_depth_map_color.npy', full_depth_map_color)"""depth_map_color = np.load('./data/full_depth_map_color.npy') # (424*512, 2)full_depth_map_color = depth_map_colormap_color = dst[full_depth_map_color[..., 0], full_depth_map_color[..., 1]] # (424*512, 2)map_color = map_color.reshape((424, 512, 3))plt.imshow(map_color/255)plt.show()if keyboard.is_pressed('esc'):break
- 彩色图去畸变。利用上文计算的相机参数对每一张彩色图去除畸变,同时保存去畸变后的彩色图。需要用到以下两个函数:
def dedistortion(mat_intri, coff_dis, img):h, w = img.shape[0], img.shape[1]newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mat_intri, coff_dis, (w, h), 1, (w, h))dst = cv2.undistort(img, mat_intri, coff_dis, None, newcameramtx)return dstdef save_image(data, name, type, dir='test'):global numidx = str(num).zfill(6)if dir == 'raw':color_path = './data/' + name + '/color'depth_path = './data/' + name + '/depth'else:color_path = "./test_data/" + name + '/color'depth_path = "./test_data/" + name + '/depth'if not os.path.exists(color_path):os.makedirs(color_path)if not os.path.exists(depth_path):os.makedirs(depth_path)if type == 'color':cv2.imwrite(color_path + '/color-' + idx + '.png', data)else:cv2.imwrite(depth_path + '/depth-' + idx + '.png', data)if dir == 'test':num += 1
- 深度图彩色图对齐。kinect相机的颜色相机和深度传感器之间存在距离,导致深度图和颜色图像素不是一一对应,需要对齐,使用以下函数对齐color和depth,对齐后将图像中心裁剪为尺寸
(480, 360)
。但是对齐后的颜色图可以会出现对齐错误(对齐npy文件存储在data包中,获取方式见kinect.py
的main函数)。
def center_crop(img, crop_size):tw, th = crop_sizeh, w = img.shape[0], img.shape[1]if len(img.shape) == 2:crop_img = img[(h - th) // 2:(h + th) // 2, (w - tw) // 2:(w + tw) // 2]else:crop_img = img[(h - th) // 2:(h + th) // 2, (w - tw) // 2:(w + tw) // 2, :]return crop_imgdef match_color_depth(color, depth):# crop+resize is worsefull_depth_map_color = np.load('data/full_depth_map_color.npy')map_color = color[full_depth_map_color[..., 0], full_depth_map_color[..., 1]] # (424*512, 2)map_color = map_color.reshape((424, 512, 3))# 512 * 424color = center_crop(map_color, (480, 360))depth = center_crop(depth, (480, 360))# plt.subplot(1, 2, 1)# plt.imshow(color)# plt.subplot(1, 2, 2)# plt.imshow(depth)# plt.show()return color, depth
- 输出color视频。将校正后的color图像流输出为指定路径下的视频。
def trans_video(image_path, video_name, fps, res, type):img_path = gb.glob(image_path + "/*.png")videoWriter = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'DIVX'), fps, res)for path in img_path:img = cv2.imread(path)img = cv2.resize(img, res)videoWriter.write(img)print('transform ' + type + ' video done!')def save_video(name):currentdate = datetime.datetime.now()file_name = str(currentdate.day) + "." + str(currentdate.month) + "." + str(currentdate.hour) + "." + str(currentdate.minute)color_path = './data/' + name + '/color'# depth_path = './data/' + name + '/depth'video_path = './data/' + name + '/video'if not os.path.exists(video_path):os.makedirs(video_path)trans_video(color_path, video_path + '/color-' + file_name + '.avi', 30, (1920, 1080), 'color')# trans_video(depth_path, depth_path + '/depth-' + file_name + '.avi', 30, (512, 424), 'depth')
- 完整调用。调用以上程序的主程序如下:
if __name__ == '__main__':# 1. shooting calibration imagesget_chess_image()# 2. camera calibrationmat_intri, coff_dis = camera_calibrator()# mat_intri = np.load('./data/intrinsic_matrix.npy')# coff_dis = np.load('./data/distortion_cofficients.npy')# 3. capture object images to save h5 filename = 'object'file_name = capture_image(name)f = h5py.File(file_name, 'r')num = 0for i in range(1, len(f.keys()), 2):color = f[str(i)][:]depth = f[str(i + 1)][:]# 4. data process: dedistortion; match color and depth images; save color/depth imagesdedistortion_color = dedistortion(mat_intri, coff_dis, color)save_image(dedistortion_color, name, 'color', 'raw')save_image(depth, name, 'depth', 'raw')new_color, new_depth = match_color_depth(dedistortion_color, depth)save_image(new_color, name, 'color', 'test')save_image(new_depth, name, 'depth', 'test')f.close()print('image save done!')# 5. convert to videosave_video(name)