8个常见的数据可视化错误以及如何避免它们

在当今以数据驱动为主导的世界里,清晰且具有洞察力的数据可视化至关重要。然而,在创建数据可视化时很容易犯错误,这可能导致对数据的错误解读。本文将探讨一些常见的糟糕数据可视化示例,并提供如何避免这些错误的建议。

本文总结了8个数据可视化的典型错误,在日常工作中我们应该尽量避免,这样才可以制作出更好的可视化效果。

1、误导色彩对比

虽然使用不同的颜色有助于解释数据可视化,但过多的颜色会让用户感到困惑。坚持使用有限数量的独特颜色是至关重要的。

用户不知道那个值更重要,并且当可视化中有太多的颜色时,用户可能需要更长的时间来理解信息。

不要使用颜色来显示哪个值比其他值高或低。具有高对比度的颜色使观看者感知到更多的数据价值。确定对比度值的最简单方法是在灰度上比较对比度颜色,而不是使用不同的颜色。

2、太的数据图表

使用大量数据提供更有深度的内容并没有什么错,但如果一次性呈现太多数据,可能会让用户不知所措。

用户无法理解所有的可视化细节,并且不知道该把注意力集中在哪里。

所以首先要确定用户需要关注什么,这样就可以将数据限制为与想要传达的信息最相关的数据。并且不要把所有的见解都写在图表里。多种可视化可以帮助您更有效地交流数据。

建议在单个可视化中使用不超过5-6种颜色。

3、省略基线而只显示比例

这种数据可视化问题在汇报时很普遍,它可能会显示错误的模式,甚至是不存在的趋势。

听众没有完全理解这些数据,在某些情况下会导致误解。当然也可以故意这么做,你懂的

4、误导性标签文字

在数据可视化中,不仅图表本身可以表达含义,标题、标签、符号和描述也帮助用户理解信息。如果这些更改呈现的故事与数据有所不同,则用户可能会感到困惑。

上面这张图表描绘了遭受骨科损伤的儿童的百分比。如果用户只看标题而不看描述,他们可能会认为5.2%的正常儿童患有脊髓损伤,从而产生严重的误解。

即使数据是正确的,如果文本修改具有误导性,也可能影响受众的解释。

只有在需要说明所展示的内容时,才应使用书面描述。并且要确保标题、标签和描述传达的意思没有误导性。

5、错误的可视化方法

选择适当的可视化来表示数据是数据可视化的关键步骤。可能有几个图表适合显示数据,但是如何选择最好的一个呢?

在上图中,两个图表都可以显示每个候选人的回答百分比。但是当我们用饼状图表示它时,用户可能会感到困惑,因为图表部分看起来彼此相似,并且数字不能等于100%。

所以需要为数据选择合适的图表,必须首先确定数据试图传达什么样的见解。一旦有了这些信息可以按照下面的方法来选择使用那个图表



6、没有因果关系的相关性

你有没有遇到过数据显示出相似的趋势,但是原因却有很大的不同?如果你把他们放到一起,可能导致用户试图找出与彼此无关的事情的原因。

如图所示,自杀人数的上升与美国在科学、太空和技术方面的投资数额的上升是同步的,这似乎是相同的趋势。然而,如果我们在科学上投入更多的钱,我们真的会看到更多的案件的增加吗?

这种相关性是误导性的,因为它没有联系。所以在制作图标前一定要确认趋势相同的数据是否有相关性。

7、放大有利数据

这是一种选择性地展示支持你观点的数据,同时忽略与你观点相反的证据的方法。在可视化中只会显示一点点来自实际数据的见解。

这种可视化隐藏了重要的数据,只给我们的用户一点洞察力。

如果你是要做正经的报告一定要注意这一点,但是哪些不正经的汇报这个方法十分有用,你懂的。

8、3D图形使用不当

大多数3D图表不再经常用于显示常见数据,因为它们有很大的数据失真风险,因为我们的人眼很难理解3D视觉效果。

但是有好多人却在一直使用,这是因为他的视觉表现比较酷炫。

这个饼状图让后半部分看起来比前半部分大,尽管实际值是30%比35%。另一种类型的3D图表在准确显示数据值方面存在一些问题。

3D图表会扭曲数据的真实性。所以尽量使用2D图表。当然如果某人偏爱酷炫的效果,那么就用吧,没办法。

并非所有数据都需要在可视化中表示

你的数据有时可能会为自己说话。有些值可以表示重要的信息,可能不需要在数据可视化中显示这些信息。

在图表或图形中显示数据可能是不必要的。数据可视化是一种传递信息的手段。在某些情况下可以使用它,而在其他情况下使用其他工具更合适。

总结

掌握数据可视化意味着将复杂的数据转化为令人信服的、真实的叙述。我们优先考虑每个图表的清晰度、准确性和洞察力,确保这些数据和图表可以为我们的决策提供准确的支持。正确的可视化不仅讲述了一个故事,而且还赋予了决策权力。

https://avoid.overfit.cn/post/074ed8e7d37c483083c7143526d65ffa

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/768249.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Javascript由浅到深

关注我,持续分享逻辑思维&管理思维; 可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导; 有意找工作的同学,请参考博主的原创:《面试官心得--面试前应该如何准备》,《面试官心得--面试时如何进行自…

蓝桥杯day11刷题日记

P8615 [蓝桥杯 2014 国 C] 拼接平方数 思路:先把数据范围内的平方数打上标记,然后就是遍历这个区间,转成字符串(好拆数据),用substr拆开数据,再强转成整数类型,最后查看拆开的数据是…

【WPF应用13】WPF基本控件-DockPanel布局详解与示例

引言 WPF (Windows Presentation Foundation) 是微软 .NET 框架的一个组成部分,它用于构建桌面应用程序的用户界面。在 WPF 中,控件是构建用户界面的基本元素,而布局控件则负责安排其他控件的位置和大小。DockPanel 是 WPF 中的一个布局控件&…

如何使用PHP和RabbitMQ实现消息队列?

前言 今天我们来做个小试验,用PHP和RabbitMQ实现消息队列功能。 前期准备,需要安装好docker、docker-compose的运行环境。 如何使用docker部署php服务_php如何使用docker发布-CSDN博客 一、安装RabbitMQ 1、创建相关目录,执行如下命令。…

计算机网络⑦ —— 网络层协议

1. ARP协议 在传输⼀个 IP 数据报的时候,确定了源 IP 地址和⽬标 IP 地址后,就会通过主机路由表确定 IP 数据包下⼀跳。然⽽,⽹络层的下⼀层是数据链路层,所以我们还要知道下⼀跳的 MAC 地址。由于主机的路由表中可以找到下⼀跳的…

手撕算法-接雨水

描述 分析 i位置能积累的雨水量,等于其左右两边最大高度的最小值。为了能获取i位置左右两边的最大高度。使用动态规划。两个dp数组: leftMaxrightMax 其中 leftMax[i] 代表i位置左边的最大高度rightMax[i] 代表i位置右边的最大高度 初始状态&#x…

npm 包管理工具:常用命令详解与使用指南

npm常用命令的更详细解释和使用场景: npm init 详细说明:此命令用于初始化一个新的Node.js项目。它会创建一个package.json文件,其中包含项目的基本信息,如名称、版本、描述、入口点(main file)、测试命令、…

Python Flask 自定义过滤器

{{ data.list | li2 }} li2就是自定义的 from flask import Flask, render_templateapp Flask(__name__)app.route("/index") def index():data {name: "张三","age": 18,list: [123123, 41, 123]}return render_template("index2.html…

[AIGC] 使用Spring Boot进行单元测试:一份指南

在现代软件开发过程中,确认你的应用正确运行是至关重要的一步。Spring Boot提供了一组实用工具和注解来辅助你在测试你的应用时,使得这个过程变得简单。下面就来分享一下如何在Spring Boot中进行单元测试。 文章目录 为什么需要单元测试Spring Boot单元测…

Redis中RDB中的文件写入

RDB文件的创建与载入。 有两个Redis命令可以用于生成RDB文件,一个是SAVE,另一个是BGSAVE. SAVE命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在服务器进程阻塞期间,服务器 不能处理任何命令请求: 127.0.0.1:6…

枚举的详解

枚举的讲解 在C语言中,没有内置的枚举(enum)数据类型,但我们可以使用整数类型来模拟枚举的行为。C99标准之前,C语言使用#define指令来定义枚举,但这种方式并不安全,因为如果枚举值发生变化&…

Ubuntu Desktop Server - user 用户与 root 用户切换

Ubuntu Desktop Server - user 用户与 root 用户切换 1. user 用户与 root 用户切换2. root 用户与 user 用户切换References 1. user 用户与 root 用户切换 strongforeverstrong:~$ strongforeverstrong:~$ sudo su [sudo] password for strong: rootforeverstrong:/home/s…

【matlab程序】海洋资料的获取与分析--AO/NAO

海洋资料的获取与分析 相关数据代码等资料已上传入群中 海洋资料下载和介绍 AO和NAO指数均取自美国气候预测中心(Climate Prediction Center, CPC)发布的月平均指数,时间跨度为1950-2022年。由于AO和NAO在冬季最强,因此本文选取…

trt | torch2trt的使用方式

一、安装 1. 安装 tensorrt python 接口 下载 trt 包 .tar.gz https://developer.nvidia.com/nvidia-tensorrt-5x-download 解压 tar xvf TensorRT-6.0.1.5.Ubuntu-18.04.x86_64-gnu.cuda-10.1.cudnn7.6.tar.gz 安装 trt python 接口 cd pythonpip install tensorrt-6.0…

springboot结合mongodb使用(一)

配置连接 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId><version>${spring.boot.version}</version></dependency>#mongodb 这里是没有设置密码sprin…

406. 根据身高重建队列(力扣LeetCode)

文章目录 406. 根据身高重建队列题目描述贪心算法代码 406. 根据身高重建队列 题目描述 假设有打乱顺序的一群人站成一个队列&#xff0c;数组 people 表示队列中一些人的属性&#xff08;不一定按顺序&#xff09;。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi &…

阿里云倚天云服务器怎么样?如何收费?

阿里云倚天云服务器CPU采用倚天710处理器&#xff0c;租用倚天服务器c8y、g8y和r8y可以享受优惠价格&#xff0c;阿里云服务器网aliyunfuwuqi.com整理倚天云服务器详细介绍、倚天710处理器性能测评、CIPU架构优势、倚天服务器使用场景及生态支持&#xff1a; 阿里云倚天云服务…

2024.3.22FunPlus客户端开发工程师笔试记录

仅做笔试记录之用。 FunPlus客户端开发工程师笔试分为以下题型&#xff1a; 15道单选、5道多选、5道填空、2道编程 相比起上次考多益的时候&#xff0c;确实是感觉轻松多了。可能是选择题难度比起上次更简单的原因。这次的考题出的相对更加全面&#xff0c;但是同时显现出的就…

macOS访问samba文件夹的正确姿势,在哪里更改“macOS的连接身份“?还真不好找!

环境&#xff1a;路由器上需要身份认证的Mini NAS macOS Sonoma 14 这是一个非常简单的问题&#xff0c;但解决方法却藏得比较深&#xff0c;不够直观&#xff0c;GPT也没有给出明确的解决提示&#xff0c;特意记录一下。 macOS很多地方都很自动&#xff0c;有时候让人找不到设…

基于单片机的语音识别智能窗帘控制器的设计

摘要 系统以单片机STC89C52 芯片作为主控模块,可以对窗帘实现光照度检测、语音识别、 按键手动等智能控制功能。光照度模块采集室外光照度数据上传至单片机,单片机发送控制指令 驱动步进电动机驱动模块,控制步进电动机转动实现窗帘的自动开合,LCD 显示屏显示实时的温 度和时…