406. 根据身高重建队列(力扣LeetCode)

文章目录

  • 406. 根据身高重建队列
    • 题目描述
    • 贪心算法
      • 代码

406. 根据身高重建队列

题目描述

假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。

请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。

示例 1:

输入:people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
解释:
编号为 0 的人身高为 5 ,没有身高更高或者相同的人排在他前面。
编号为 1 的人身高为 7 ,没有身高更高或者相同的人排在他前面。
编号为 2 的人身高为 5 ,有 2 个身高更高或者相同的人排在他前面,即编号为 0 和 1 的人。
编号为 3 的人身高为 6 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
编号为 4 的人身高为 4 ,有 4 个身高更高或者相同的人排在他前面,即编号为 0、1、2、3 的人。
编号为 5 的人身高为 7 ,有 1 个身高更高或者相同的人排在他前面,即编号为 1 的人。
因此 [[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]] 是重新构造后的队列。

示例 2:

输入:people = [[6,0],[5,0],[4,0],[3,2],[2,2],[1,4]]
输出:[[4,0],[5,0],[2,2],[3,2],[1,4],[6,0]]

提示:

  • 1 <= people.length <= 2000
  • 0 <= hi <= 106
  • 0 <= ki < people.length
  • 题目数据确保队列可以被重建

贪心算法

本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。

其实如果大家认真做了135. 分发糖果,就会发现和此题有点点的像。

在135. 分发糖果我就强调过一次,遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。

如果两个维度一起考虑一定会顾此失彼。

对于本题相信大家困惑的点是先确定k还是先确定h呢,也就是究竟先按h排序呢,还是先按照k排序呢?

如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。

那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。

此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!

那么只需要按照k为下标重新插入队列就可以了,为什么呢?

以图中{5,2} 为例:
在这里插入图片描述
按照身高排序之后,优先按身高高的people的k来插入,后序插入节点也不会影响前面已经插入的节点,最终按照k的规则完成了队列。

所以在按照身高从大到小排序后:

局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性

全局最优:最后都做完插入操作,整个队列满足题目队列属性

局部最优可推出全局最优,找不出反例,那就试试贪心。

整个插入过程如下:

排序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]

插入的过程:

插入[7,0]:[[7,0]]
插入[7,1]:[[7,0],[7,1]]
插入[6,1]:[[7,0],[6,1],[7,1]]
插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
此时就按照题目的要求完成了重新排列。

代码

这段代码实现了一个有趣的问题:根据人群的身高和每个人前面身高不低于该人的人数来重建队列。这是一个贪心算法的应用,其中处理的核心思想是先安排身高较高的人,然后再依次安排身高较低的人,利用了排序和列表插入的技巧。下面是对这段代码的详细注释:

class Solution {
public:// 自定义比较函数,用于排序static bool cmp(vector<int>& a,vector<int>& b){// 如果身高相等,则按照 k 值(即队列中前面不低于自己身高的人数)升序排序// 这样可以保证相同身高的人按照他们的 k 值正确排序if(a[0]==b[0]) return a[1]<b[1];// 否则,按照身高降序排序return a[0]>b[0];}vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {vector<vector<int>> que; // 初始化空队列// 对 people 数组进行排序,排序规则由自定义的 cmp 函数决定sort(people.begin(),people.end(),cmp);// 遍历排序后的人群for(int i=0;i<people.size();i++){int pos=people[i][1]; // 获取当前人前面应有的不低于自己身高的人数,即 k 值// 在队列的指定位置插入当前人的信息// pos 位置正好保证了该人前面有 pos 个不低于自己的身高的人que.insert(que.begin()+pos,people[i]);}// 返回重构后的队列return que;}};

代码的逻辑如下:

  1. 首先,通过自定义排序规则(先按身高降序排序,身高相同则按 k 值升序排序),对输入的 people 数组进行排序。这样做的目的是确保在遍历并插入每个人到队列时,队列中已存在的人都是身高不低于当前人的,从而满足题目中的 k 值的要求。
  2. 然后,遍历排序后的数组,对于每个人,根据他们的 k 值,也就是他们前面应有的不低于自己身高的人数,在队列的相应位置插入他们的信息。由于是降序排序,此时插入位置之前的人都是身高不低于当前人的,因此这一步可以确保每个人的 k 值要求得到满足。
  3. 最后,返回重构后的队列。

这种方法巧妙地利用了排序和列表插入操作,有效地解决了问题,展示了贪心算法在实际问题中的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/768232.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云倚天云服务器怎么样?如何收费?

阿里云倚天云服务器CPU采用倚天710处理器&#xff0c;租用倚天服务器c8y、g8y和r8y可以享受优惠价格&#xff0c;阿里云服务器网aliyunfuwuqi.com整理倚天云服务器详细介绍、倚天710处理器性能测评、CIPU架构优势、倚天服务器使用场景及生态支持&#xff1a; 阿里云倚天云服务…

macOS访问samba文件夹的正确姿势,在哪里更改“macOS的连接身份“?还真不好找!

环境&#xff1a;路由器上需要身份认证的Mini NAS macOS Sonoma 14 这是一个非常简单的问题&#xff0c;但解决方法却藏得比较深&#xff0c;不够直观&#xff0c;GPT也没有给出明确的解决提示&#xff0c;特意记录一下。 macOS很多地方都很自动&#xff0c;有时候让人找不到设…

高中信息技术教资刷题笔记_大题篇

1.选择排序 2. SMTP属于TCP/IP协议体系结构中的哪一层&#xff1f;请列出其通信的三个阶段。 3.高中信息技术课程的基本理念/意义 4.视频作品制作和发布的主要环节 5.信息社会责任内涵及学生表现 6.教学活动意图 ①突出学生的主体地位。材料中&#xff0c;王老师设计的“扮演谍…

代码随想录算法训练营Day56 ||leetCode 583. 两个字符串的删除操作 || 72. 编辑距离

647. 回文子串 dp[i][j]表示第i位开始&#xff0c;第j位结束的字符串是否为回文串 class Solution { public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result 0;for (int i s.size() - 1…

分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测

分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测 目录 分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测分类效果基本介绍模型描述程序设计参…

c#矩阵求逆

目录 一、矩阵求逆的数学方法 1、伴随矩阵法 2、初等变换法 3、分块矩阵法 4、定义法 二、矩阵求逆C#代码 1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵 &#xff08;1&#xff09;伴随矩阵数学方法 &#xff08;2&#xff09;代码 &#xff08;3&#xff09;计算 2、对…

政安晨:【深度学习实践】【使用 TensorFlow 和 Keras 为结构化数据构建和训练神经网络】(五)—— Dropout和批归一化

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras实战演绎 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; Dropout和批归一化是深度学习领域中常用的正则化技术…

stm32之GPIO寄存器

文章目录 1 背景2 GPIO寄存器的类型2.1 端口配置寄存器2.2 设置/清除寄存器和位清除寄存器 3 总结 1 背景 C51单片机在进行数据的输入输出时&#xff0c;是直接操作与外部引脚关联的内部寄存器&#xff0c;例如&#xff0c;当设置P2_1为0时&#xff0c;就是将外部引脚的P21引脚…

YOLOV5 部署:TensorRT的安装和使用

1、介绍 TensorRT 可以加速神经网络的推理时间,常常在工业生产中使用 因为TensorRT需要使用到cuda和cudnn加速,所以需要安装这两个,安装的具体步骤参考前文: YOLOV5 部署:cuda和cuDNN安装-CSDN博客 2、TensorRT 下载 TensorRT下载地址:NVIDIA TensorRT Download | NV…

6.windows ubuntu 子系统 测序数据质量控制。

上一个分享&#xff0c;我们对测序数据进行了质量评估&#xff0c;接下来我们需要对数据进行数据质量控制。 数据预处理&#xff08;Data Preprocessing&#xff09;&#xff1a;包括去除接头序列&#xff08;adapter trimming&#xff09;、去除低质量序列&#xff08;qualit…

Spark—GraphX实战 OneID

OneID 前面我们学习了ID Mapping&#xff0c;包括ID Mapping 的背景介绍和业务场景&#xff0c;以及如何使用Spark 实现ID Mapping&#xff0c;这个过程中涉及到了很多东西&#xff0c;当然我们都通过文章的形式介绍给大家了&#xff0c;所以你再学习今天这一节之前&#xff0…

OpenCV4.9.0开源计算机视觉库核心功能(核心模块)

转到&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV 介绍使用 下一篇&#xff1a;如何使用OpenCV扫描图像、查找表和时间测量 ​ OpenCV核心功能主要有以下各个&#xff1a;本文将开始介绍下列内容&#xff1a; Mat - 基…

SpringBoot配置JWT拦截器

目录 1.背景介绍 2.前提工作 3.具体代码 &#xff08;1&#xff09;相关依赖 &#xff08;2&#xff09;相关配置文件 &#xff08;3&#xff09;JwtUtils类 &#xff08;4&#xff09;准备好登录逻辑代码&#xff08;Dao、Service、Controller&#xff09; &#xff0…

解决方案Please use Oracle(R) Java(TM) 11, OpenJDK(TM) 11 to run Neo4j.

文章目录 一、现象二、解决方案 一、现象 当安装好JDK跟neo4j&#xff0c;用neo4j.bat console来启动neo4却报错&#xff1a; 部分报错信息&#xff1a; Starting Neo4j. WARNING! You are using an unsupported Java runtime. Please use Oracle Java™ 11, OpenJDK™ 11 t…

大白话扩散模型(无公式版)

背景 传统的图像生成模型有GAN&#xff0c;VAE等&#xff0c;但是存在模式坍缩&#xff0c;即生成图片缺乏多样性&#xff0c;这是因为模型本身结构导致的。而扩散模型拥有训练稳定&#xff0c;保持图像多样性等特点&#xff0c;逐渐成为现在AIGC领域的主流。 扩散模型 正如…

Google ScreenAI代表了一款先进的视觉语言模型,专为用户界面(UI)和视觉情境下的语言理解而设计

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras实战演绎机器学习 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 前言 TensorFlow Extended&#xff08;TFX&a…

深入了解Redis的过期策略和内存淘汰机制

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; ✨✨ 帅哥美女们&#xff0c;我们共同加油&#xff01;一起进步&am…

mysql基础2多表查询

多表查询 多表关系: 一对多 案例: 部门 与 员工的关系 关系: 一个部门对应多个员工&#xff0c;一个员工对应一个部门 实现: 在多的一方建立外键&#xff0c;指向一的一方的主键 多对多 案例: 学生 与 课程的关系 关系: 一个学生可以选修多门课程&#xff0c;一门课程也可以…

RuleApp资源社区,知识付费社区,可对接typecho的小程序APP

强大的文章/社区/自媒体客户端&#xff0c;支持打包为安卓&#xff0c;苹果&#xff0c;小程序。包括文章模块&#xff0c;用户模块&#xff0c;支付模块&#xff0c;聊天模块&#xff0c;商城模块等基础功能&#xff0c;包含VIP会员&#xff0c;付费阅读等收费体系&#xff0c…