【深度优先】【图论】【C++算法】2045. 到达目的地的第二短时间

作者推荐

视频算法专题

LeetCode2045. 到达目的地的第二短时间

城市用一个 双向连通 图表示,图中有 n 个节点,从 1 到 n 编号(包含 1 和 n)。图中的边用一个二维整数数组 edges 表示,其中每个 edges[i] = [ui, vi] 表示一条节点 ui 和节点 vi 之间的双向连通边。每组节点对由 最多一条 边连通,顶点不存在连接到自身的边。穿过任意一条边的时间是 time 分钟。
每个节点都有一个交通信号灯,每 change 分钟改变一次,从绿色变成红色,再由红色变成绿色,循环往复。所有信号灯都 同时 改变。你可以在 任何时候 进入某个节点,但是 只能 在节点 信号灯是绿色时 才能离开。如果信号灯是 绿色 ,你 不能 在节点等待,必须离开。
第二小的值 是 严格大于 最小值的所有值中最小的值。
例如,[2, 3, 4] 中第二小的值是 3 ,而 [2, 2, 4] 中第二小的值是 4 。
给你 n、edges、time 和 change ,返回从节点 1 到节点 n 需要的 第二短时间 。
注意:
你可以 任意次 穿过任意顶点,包括 1 和 n 。
你可以假设在 启程时 ,所有信号灯刚刚变成 绿色 。
示例 1: 
输入:n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5
输出:13
在这里插入图片描述

解释:
上面的左图展现了给出的城市交通图。
右图中的蓝色路径是最短时间路径。
花费的时间是:

  • 从节点 1 开始,总花费时间=0
  • 1 -> 4:3 分钟,总花费时间=3
  • 4 -> 5:3 分钟,总花费时间=6
    因此需要的最小时间是 6 分钟。
    右图中的红色路径是第二短时间路径。
  • 从节点 1 开始,总花费时间=0
  • 1 -> 3:3 分钟,总花费时间=3
  • 3 -> 4:3 分钟,总花费时间=6
  • 在节点 4 等待 4 分钟,总花费时间=10
  • 4 -> 5:3 分钟,总花费时间=13
    因此第二短时间是 13 分钟。
    示例 2:
    输入:n = 2, edges = [[1,2]], time = 3, change = 2
    输出:11
    解释:
    最短时间路径是 1 -> 2 ,总花费时间 = 3 分钟
    第二短时间路径是 1 -> 2 -> 1 -> 2 ,总花费时间 = 11 分钟

提示:

2 <= n <= 104
n - 1 <= edges.length <= min(2 * 104, n * (n - 1) / 2)
edges[i].length == 2
1 <= ui, vi <= n
ui != vi
不含重复边
每个节点都可以从其他节点直接或者间接到达
1 <= time, change <= 103

深度优先

经过的边数相同,则行驶时间相同,等待时间也相同。所以本题等效与求严格经过边数第二少。令经过最少的边数是x,则严格第二少的边数只能是x+1或x+2。因为:到达目的地后返回一个节点,再到达目的地,经过的边数是x+2。
本问题等于与:
一,计算最少经过边数x。
二,能否经过x+1条边到达目的的。

每个节点除了记录最少边数,还要记录另外一个状态i1:
初始为0,第一次到达是变成1。加入队列。
1变2的条件:新经过的边数等于x+1。加入队列。
2不会发生的变化。
每个节点最多入队两次。估计时间复杂度是:O(n)。
目的地的i1,如果为1,则严格第二少的边数为x+1,否则为x+2。

通过边数计算时间:
如果总时间time / change 是奇数需要等待 等待时间 change - (time/change)。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:int secondMinimum(int n, vector<vector<int>>& edges, int time, int change) {CNeiBo2 neiBo(n, edges, false, 1);queue<pair<int,int>> que;		vector<int> vDis(n), vStatu(n);que.emplace(0,0);vStatu[0] = 1;while (que.size()){const auto [cur,curDis] = que.front();que.pop();for (const auto& next : neiBo.m_vNeiB[cur]){const int iNewDis = curDis + 1;if (0 == vStatu[next]){vDis[next] = iNewDis;vStatu[next] = 1;que.emplace(next,iNewDis);}else if ((1 == vStatu[next])&&( vDis[next]+1 == iNewDis)){vStatu[next] = 2;que.emplace(next, iNewDis);}}}const int iEdgeNum = (1 == vStatu.back()) ? (vDis.back() + 2) : (vDis.back() + 1);int iTime = 0;for (int i = 1; i <= iEdgeNum; i++){iTime += time;if ((iTime / change) & 1){if (iEdgeNum != i){iTime += (change - (iTime % change));}}}return iTime;}
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}

}

int main()
{
int n, time, change;
vector<vector> edges;
{
Solution sln;
n = 5, edges = { {1,2},{1,3},{1,4},{3,4},{4,5} }, time = 3, change = 5;
auto res = sln.secondMinimum(n, edges, time, change);
Assert(13, res);
}
{
Solution sln;
n = 2, edges = { {1,2} }, time = 3, change = 2;
auto res = sln.secondMinimum(n, edges, time, change);
Assert(11, res);
}
}

2023年4月

class Solution {
public:
int secondMinimum(int n, vector<vector>& edges, int time, int change) {
m_vNeiB.resize(n + 1);
m_vDis.assign(n + 1,INT_MAX);
m_vDis2.assign(n + 1, INT_MAX);
for (const auto& e : edges)
{
m_vNeiB[e[0]].emplace_back(e[1]);
m_vNeiB[e[1]].emplace_back(e[0]);
}
std::queue<pair<int,int>> que;
que.emplace(1,0);
while (que.size())
{
const int iCur = que.front().first;
const int len = que.front().second;
que.pop();
for (const auto& next : m_vNeiB[iCur])
{
const int iNewLen = len + 1;
if (iNewLen >= m_vDis2[next])
{
continue;
}
que.emplace(next, iNewLen);
if (iNewLen < m_vDis[next])
{
m_vDis[next] = iNewLen;
}
else if (iNewLen != m_vDis[next])
{
m_vDis2[next] = iNewLen;
}
}
}
int tmp = m_vDis2[n];
int iRet = 0;
while (tmp–)
{
if ((iRet / change) & 1)
{
iRet += (change - iRet%change);
}
iRet += time;
}
return iRet;
}
vector<vector> m_vNeiB;
vector m_vDis;
vector m_vDis2;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/728717.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EVE-NG桥接虚拟网卡实现与虚拟机通讯

一、知识补充 1、VMware网络连接 在VM中&#xff0c;给我们提供了以下几种连接网络的模式 桥接模式&#xff1a;直接联机物理网络NAT模式&#xff1a;用于共享主机的IP地址仅主机模式&#xff1a;与主机共享的专用网络自定义&#xff1a;特定虚拟网络LAN区段 特别注意的是&am…

【计算机系统】2.进程管理

【计算机系统】2.进程管理 这个章节十分的重要&#xff0c;作业也要好好做&#xff0c;因为我学的是后端&#xff0c;学计算机进程的处理对于搞并发来说十分有用。 提出问题 6、试从动态性、并发性和独立性上比较进程和程序。19、为什么要在OS中引入线程?A.请用信号量解决以下…

NineData与OceanBase完成产品兼容认证,共筑企业级数据库新生态

近日&#xff0c;云原生智能数据管理平台 NineData 和北京奥星贝斯科技有限公司的 OceanBase 数据库完成产品兼容互认证。经过严格的联合测试&#xff0c;双方软件完全相互兼容、功能完善、整体运行稳定且性能表现优异。 此次 NineData 与 OceanBase 完成产品兼容认证&#xf…

【你也能从零基础学会网站开发】Web建站之HTML+CSS入门篇 传统布局和Web标准布局的区别

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 传统布局与…

【机器学习】包裹式特征选择之基于遗传算法的特征选择

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

微信小程序开发系列(二十二)·wxml语法·双向数据绑定model:的用法

目录 1. 单向数据绑定 2. 双向数据绑定 3. 代码 在 WXML 中&#xff0c;普通属性的绑定是单向的&#xff0c;例如&#xff1a;<input value"((value))"/> 如果希望用户输入数据的同时改变 data 中的数据&#xff0c;可以借助简易双向绑定机制。在对应属性…

STM32day2

1.思维导图 个人暂时的学后感&#xff0c;不一定对&#xff0c;没什么东西&#xff0c;为做项目奔波中。。。1.使用ADC采样光敏电阻数值&#xff0c;如何根据这个数值调节LED灯亮度。 while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */adc_val HAL_ADC_GetValue(&a…

开源分子对接程序rDock使用方法(1)-Docking in 3 steps

欢迎浏览我的CSND博客&#xff01; Blockbuater_drug …点击进入 文章目录 前言一、Docking in 3 steps 标准对接rDock 的基本对接步骤及注意事项 二、 三步对接案例Step 1. 结构文件准备Step 2. 产生对接位点Step 3. 运行分子对接3.1 检查输入文件3.2 测试-只进行打分3.3 运行…

【数据结构】二、线性表:6.顺序表和链表的对比不同(从数据结构三要素讨论:逻辑结构、物理结构(存储结构)、数据运算(基本操作))

文章目录 6.对比&#xff1a;顺序表&链表6.1逻辑结构6.2物理结构&#xff08;存储结构&#xff09;6.2.1顺序表6.2.2链表 6.3数据运算&#xff08;基本操作&#xff09;6.3.1初始化6.3.2销毁表6.3.3插入、删除6.3.4查找 6.对比&#xff1a;顺序表&链表 6.1逻辑结构 顺…

【短时交通流量预测】基于小波神经网络WNN

课题名称&#xff1a;基于小波神经网络的短时交通流量预测 版本时间&#xff1a;2023-04-27 代码获取方式&#xff1a;QQ&#xff1a;491052175 或者 私聊博主获取 模型简介&#xff1a; 城市交通路网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关&#x…

【嵌入式】嵌入式系统稳定性建设:静态代码扫描的稳定性提升术

1. 概述 在嵌入式系统开发过程中&#xff0c;代码的稳定性和可靠性至关重要。静态代码扫描工具作为一种自动化的代码质量检查手段&#xff0c;能够帮助开发者在编译前发现潜在的缺陷和错误&#xff0c;从而增强系统的稳定性。本文将介绍如何在嵌入式C/C开发中使用静态代码扫描…

排序算法——梳理总结

✨冒泡 ✨选择 ✨插入  ✨标准写法  &#x1f3ad;不同写法 ✨希尔排序——标准写法 ✨快排 ✨归并 ✨堆排 ✨冒泡 void Bubble(vector<int>& nums) {// 冒泡排序只能先确定最右边的结果&#xff0c;不能先确定最左边的结果for (int i 0; i < nums.size(); i){…

基于深度学习的交通标志检测识别系统(含UI界面、yolov8、Python代码、数据集)

项目介绍 项目中所用到的算法模型和数据集等信息如下&#xff1a; 算法模型&#xff1a;     yolov8 yolov8主要包含以下几种创新&#xff1a;         1. 添加注意力机制&#xff08;SE、CBAM等&#xff09;         2. 修改可变形卷积&#xff08;DySnake-主干c…

linux系统命令深入研究1——ls的参数

ls list命令有一些常用的参数&#xff0c;其中-a意为列出all全部文件&#xff08;包括隐藏文件&#xff09;&#xff0c;-l列出详细信息&#xff0c;-h以人类可阅读的方式列出文件大小 --full-time是列出详细时间信息&#xff0c;包括最后一次修改时间 -t是按时间排序&#xff…

Git 内幕探索:从底层文件系统到历史编辑的全面指南

微信搜索“好朋友乐平”关注公众号。 1. Git 底层文件对象 #mermaid-svg-uTkvyr26fNmajZ3n {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-uTkvyr26fNmajZ3n .error-icon{fill:#552222;}#mermaid-svg-uTkvyr26fNmaj…

Spark实战-基于Spark日志清洗与数据统计以及Zeppelin使用

Saprk-日志实战 一、用户行为日志 1.概念 用户每次访问网站时所有的行为日志(访问、浏览、搜索、点击)用户行为轨迹&#xff0c;流量日志2.原因 分析日志&#xff1a;网站页面访问量网站的粘性推荐3.生产渠道 (1)Nginx(2)Ajax4.日志内容 日志数据内容&#xff1a;1.访问的…

【动态规划】完全背包

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb;完全背包 &#x1f449;&#x1f3fb;…

政安晨:【深度学习处理实践】(二)—— 最大汇聚运算

最大汇聚运算&#xff08;Max Pooling Operation&#xff09;是深度学习领域卷积神经网络常用的一种汇聚运算方式。在卷积神经网络中&#xff0c;经过一系列卷积层和激活函数层后&#xff0c;数据在空间尺寸上逐渐减小&#xff0c;特征图的深度也逐渐增加。为了降低数据尺寸并提…

微信小程序(五十三)修改用户头像与昵称

注释很详细&#xff0c;直接上代码 上一篇 新增内容&#xff1a; 1.外界面个人资料基本模块 2.资料修改界面同步问题实现&#xff08;细节挺多&#xff0c;考虑了后期转服务器端的方便之处&#xff09; 源码&#xff1a; app.json {"window": {},"usingCompone…

算法打卡day11|栈与队列篇03|Leetcode 239. 滑动窗口最大值、347.前 K 个高频元素

小顶堆和大顶堆 小顶堆&#xff08;Min Heap&#xff09;和大顶堆&#xff08;Max Heap&#xff09;是两种特殊的完全二叉树&#xff0c;它们遵循特定的堆属性&#xff0c;即父节点的值总是小于或等于&#xff08;小顶堆&#xff09;或者大于或等于&#xff08;大顶堆&#xf…