对战ChatGPT,创邻科技的Graph+AI会更胜一筹吗?

大模型(大规模语言模型,即Large Language Model)的应用已经成为千行百业发展的必然。特定领域或行业中经过训练和优化的企业级垂直大模型则成为大模型走下神坛、真正深入场景的关键之路。

但是,企业级垂直大模型在正式落地应用前,必须克服事实性与可解释性等难题。尤其是在工业化场景中,大模型有限的推理能力常常无法满足企业对高确定性答案的需求,“胡乱生成”的答案将给业务带来极大的风险。

而知识图谱(Knowledge Graph),利用多模态信息补充符号语义表达的不足,能够进一步支撑多模态理解、推理和元认知等能力,通过和大模型协同工作,实现互补、互动和相互增强。当大模型和知识图谱结合时,能够通过数据及知识增强双向推理,进而弥合文本和结构信息之间的差距,并提升推理可解释性,共同⾯对多重挑战。

首发尝试,让知识注入大模型

基于对大模型和知识图谱融合的前沿认知,创邻科技率先在金融领域展开研究,研发了一款智能问答类应用平台——“创邻天问平台”

一方面,在线问答系统是企业和用户沟通互动的“第一窗口”,能够第一时间触达客户的需求,通过提升回应的及时率和准确度,帮助企业提高客户满意度。而当下的问答产品大多聚焦通用或者垂直领域,难以做到知识广度和深度兼具。因此,在线问答系统升级是企业减少客服成本,提升客服效率的关键路径。

另一方面,考虑到信用卡场景往往涉及许多复杂的金融概念、术语和条款,并且受到法律和监管机构在用户权益、费用结构、欺诈防范等方面的严格监管,当进行具体回答时,不仅需要满足不同用户的需求和偏好,保证用户能够直观理解相关概念,还需要确保提供的信息和建议符合适用法律法规。

针对金融信用卡场景,创邻结合大模型与知识图谱的能力,打造了“天问”智能问答系统。

话不多说,先一起围观一下实测结果!

Q1:18岁以下无法作为信用卡的申请人和持卡人吗
在这里插入图片描述

Q2:当且仅当年满18岁,具有完全民事行为能力可以申请信用卡主卡吗?
在这里插入图片描述

*后续,小编还针对“创邻天问平台”进行了多轮问答测试,感兴趣的小伙伴可以添加小助手了解更多测试详情。

不难发现,“创邻天问平台”的回答相比单独的大模型问答或者知识图谱的问答,会保留更多概念细节与引用来解释内容,提升回答的可信度,减少事实性错误。同时,为了方便用户进行理解,“创邻天问平台”对相关上下文也进行了优化,让回答的语句之间更加有逻辑。

利用图技术和通用大模型的协同工作,“创邻天问平台”不仅做到了对垂直大模型的推理框架的优化升级,赋予其优秀的逻辑推理能力,还拓展了⼤模型的原始知识边界,让生成式回答的灵活开放性与精确性并存,提升了垂直业务领域问答系统的知识专业性和回答准确性

此外,“创邻天问平台”以自研分布式高性能图数据库Galaxybase作为核心技术支撑。相较于传统的知识图谱技术,它能够实时处理数据,优化信息处理效率,加速内部推理过程,让智能问答系统加倍升级。

总结

现阶段,人工智能或许仍只能依靠数据实现浅层推理。我们致力于实现符号主义的知识图谱与连接主义的大模型有机结合,实现推理能力的升级。大模型和图技术的结合有望改变当前“百模大战”的格局,“创邻天问”让智能问答系统迈进下一阶段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/66846.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器人中的数值优化(十一)——高斯牛顿法、LMF方法、Dogleg方法

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…

【FPGA零基础学习之旅#11】数码管动态扫描

🎉欢迎来到FPGA专栏~数码管动态扫描 ☆* o(≧▽≦)o *☆嗨~我是小夏与酒🍹 ✨博客主页:小夏与酒的博客 🎈该系列文章专栏:FPGA学习之旅 文章作者技术和水平有限,如果文中出现错误,希望大家能指正…

hadoop1.2.1伪分布式搭建

0.使用host-only方式 将Windows上的虚拟网卡改成跟Linux上的网卡在同一网段 注意:一定要将widonws上的WMnet1的IP设置和你的虚拟机在同一网段,但是IP不能相同 1.Linux环境配置(windows下面的防火墙也要关闭) 1.1修改主…

HarmonyOS—UI开发性能提升的推荐方法

注:本文转载自HarmonyOS官网文档 开发者若使用低性能的代码实现功能场景可能不会影响应用的正常运行,但却会对应用的性能造成负面影响。本章节列举出了一些可提升性能的场景供开发者参考,以避免应用实现上带来的性能劣化。 使用数据懒加载 开…

BBR cwnd_gain 的循环依赖 bug

同事咨询了一个有趣的问题,bbr 在probe bw 状态下,rtt 变小了,但采集到的 delivery date 却没变,此时算出来的 cwnd 变小,限制了 sender 发送。这种情况应该调什么参数。 这是 bbr 一个典型的循环依赖 bug&#xff0c…

VUE 程序的执行过程(非常非常重要)

在Vue.js应用程序中&#xff0c;index.html和main.js的执行顺序是&#xff1a; 1. 首先&#xff0c;浏览器加载index.html文件。 2. 在index.html文件中&#xff0c;通过<script>标签引入了main.js文件。 3. 当浏览器遇到<script>标签时&#xff0c;它会停止解析H…

如何熟练使用vector?

&#x1f388;个人主页:&#x1f388; :✨✨✨初阶牛✨✨✨ &#x1f43b;推荐专栏1: &#x1f354;&#x1f35f;&#x1f32f;C语言初阶 &#x1f43b;推荐专栏2: &#x1f354;&#x1f35f;&#x1f32f;C语言进阶 &#x1f511;个人信条: &#x1f335;知行合一 &#x1f…

Blender 围绕自身的原点旋转与游标旋转

默认情况下的旋转是&#xff0c;R后旋转是物体自身的原点旋转 可以修改为围绕游标旋转&#xff0c;通过旋转R时 局部与全局坐标 全局的坐标不会变 局部的会随着物体的旋转变化 如果平稳时GZZ会在全局到局部坐标之间切换 或在局部到全局之间的切换 学习视频&#xff1a;【基础…

PaddleNLP使用Vicuna

LLaMA 模型 LLaMa 是一个大型语言模型&#xff0c;由 Meta 开源。它的全称是 Large Language Model Meta AI&#xff0c;参数量从 70 亿到 650 亿不等。例如&#xff0c;130 亿参数的 LLaMA 模型在大多数基准上可以胜过参数量达 1750 亿的 GPT-3&#xff0c;而且可以在单块 V1…

go语言-channel

环形缓存可以降低GC得开销 channel使用得是mutex锁 互斥锁并不是排队发送/接收数据 互斥锁保护的hchan结构体本身 Channel并不是无锁的 底层发送原理 c<- 关键字是一个语法糖 编译阶段&#xff0c;会把 c<- 转化为 runtime.chansend10 chansend10会调用 charsend0 方法…

使用 FastChat 运行 CodeLlama-7b-Instruct-hf

使用 FastChat 运行 CodeLlama-7b-Instruct-hf 1. 确认 FactChat 支持的 Model2. 升级依赖3. 启动 controller4. 启动 CodeLlama5. 启动 api server6. VSCode 中使用 CodeLlama 1. 确认 FactChat 支持的 Model 访问 model_support.md&#xff0c;确认 codellama/CodeLlama-7b-…

【100天精通Python】Day53:Python 数据分析_NumPy数据操作和分析进阶

目录 1. 广播 2 文件输入和输出 3 随机数生成 4 线性代数操作 5 进阶操作 6 数据分析示例 1. 广播 广播是NumPy中的一种机制&#xff0c;用于在不同形状的数组之间执行元素级操作&#xff0c;使它们具有兼容的形状。广播允许你在不显式复制数据的情况下&#xff0c;对不同…

小程序数据导出文件

小程序josn数据生成excel文件 先从下载传送门将xlsx.mini.min.js拷贝下来&#xff0c;新建xlsx.js文件放入小程序项目文件夹下。 const XLSX require(./xlsx)//在需要用的页面中引入// 定义导出 Excel 报表的方法exportData() {const that thislet newData [{time:2021,val…

用XSIBackup为VMware ESXi打造完美备份方案

文章目录 VMware ESXi 备份方案引言XSIBackup安装步骤1. XSIBackup软件安装2. SSH连接3. 定位到xsibackup目录4. 修改文件权限5. 安装cron查看crontab列表6. 配置备份任务结论VMware ESXi 备份方案 引言 数据就像是我们的生命线,一旦丢失,可能会带来无法挽回的损失。对于那…

AI绘画:StableDiffusion实操教程-斗罗大陆2-江楠楠-常服(附高清图下载)

前段时间我分享了StableDiffusion的非常完整的教程&#xff1a;“AI绘画&#xff1a;Stable Diffusion 终极宝典&#xff1a;从入门到精通 ” 尽管如此&#xff0c;还有读者反馈说&#xff0c;尽管已经成功安装&#xff0c;但生成的图片与我展示的结果相去甚远。真实感和质感之…

uniapp微信小程序用户隐私保护

使用wx.requirePrivacyAuthorize实现微信小程序用户隐私保护。 一、前言 微信小程序官方出了一个公告《关于小程序隐私保护指引设置的公告》。不整的话&#xff0c;后果很多授权无法使用&#xff0c;详见《小程序用户隐私保护指引内容介绍》 。 二、隐私相关设置 1、在 微信…

关于大模型参数微调的不同方法

Adapter Tuning 适配器模块&#xff08;Adapter Moudle&#xff09;可以生成一个紧凑且可扩展的模型&#xff1b;每个任务只需要添加少量可训练参数&#xff0c;并且可以在不重新访问之前任务的情况下添加新任务。原始网络的参数保持不变&#xff0c;实现了高度的参数共享 Pa…

基于Halcon的喷码识别方法

具体步骤如下: 1. 读入一幅图片(彩色或黑白); 2. 将RGB图像转化为灰度图像; 3. 提取图片中的圆点特征(喷码图片中多是圆点特征),在Halcon中dots_image() 函数非常适合喷码检测; 4. 通过设定阈值,增强明显特征部分; 5. 进行一系列形态学操作(如闭运算等),将…

CSS中如何隐藏元素但保留其占位空间(display:nonevsvisibility:hidden)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 隐藏元素但保留占位空间⭐ display: none;⭐ visibility: hidden;⭐ 总结⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&a…

基于Django的博客管理系统

1、克隆仓库https://gitee.com/lylinux/DjangoBlog.git 若失效&#xff1a;https://gitee.com/usutdzxy/DjangoBlog.git 2、环境安装 pip install -Ur requirements.txt3、修改djangoblog/setting.py 修改数据库配置&#xff0c;其他的步骤就按照官方文档。 DATABASES {def…