基于动作合成视频、线免费使用不需要注册,支持多种视频任务:图像生成视频、文本生成视频、视频修改、视频风格化、用Transformer构建世界模型

基于动作合成视频、线免费使用不需要注册,支持多种视频任务:图像生成视频、文本生成视频、视频修改、视频风格化、用Transformer构建世界模型。

WorldDreamer无缝逐帧AI模型: 基于Transformer生成高质量电影级别视频的通用世界模型"。从20亿数据中学习物理世界,基于Transformer的通用世界模型成功挑战视频生成。

WorldDreamer是一个基于Transformer的通用世界模型,能够完成自然场景和自动驾驶场景多种视频生成任务,如文生视频、图生视频、视频编辑、动作序列生视频等。该模型从20亿数据中学习物理世界,通过预测Token的方式建立通用场景世界模型,将视频生成转换为序列预测任务,从而对物理世界的变化和运动规律进行充分地学习。可视化实验证明,WorldDreamer深刻理解了通用世界的动态变化规律。
在这里插入图片描述
WorldDreamer的原理是将视频生成转换为一个序列预测任务,通过预测被掩码的视觉Token来生成视频。它采用Transformer架构,借鉴大型语言模型的成功经验,将世界模型建模框架转换为一个无监督的视觉Token预测问题。

WorldDreamer的特点是能够完成多种视频生成任务,包括但不限于图像生成视频、文本生成视频、视频修改、视频风格化和基于动作合成视频等。它具有生成高质量电影级别视频的能力,其生成的视频呈现出无缝的逐帧运动,类似于真实电影中流畅的摄像机运动。而且,这些视频严格遵循原始图像的约束,确保帧构图的显著一致性。

WorldDreamer的用途包括但不限于:

自动驾驶场景下的驾驶动作到视频的生成
从文本生成视频、从单一图像预测未来的帧
根据语言的输入可以更改被mask区域的视频内容、以及改变视频的风格等。

它可以完成自然场景和自动驾驶场景多种视频生成任务,例如文生视频、图生视频、视频编辑、动作序列生视频等。

据团队介绍,通过预测Token的方式来建立通用场景世界模型,WorldDreamer是业界首个。

它把视频生成转换为一个序列预测任务,可以对物理世界的变化和运动规律进行充分地学习。

可视化实验已经证明,WorldDreamer已经深刻理解了通用世界的动态变化规律。

那么,它都能完成哪些视频任务,效果如何呢?

支持多种视频任务
图像生成视频(Image to Video)
WorldDreamer可以基于单一图像预测未来的帧。

只需首张图像输入,WorldDreamer将剩余的视频帧视为被掩码的视觉Token,并对这部分Token进行预测。

如下图所示,WorldDreamer具有生成高质量电影级别视频的能力。

其生成的视频呈现出无缝的逐帧运动,类似于真实电影中流畅的摄像机运动。

而且,这些视频严格遵循原始图像的约束,确保帧构图的显著一致性。

在这里插入图片描述
文本生成视频(Text to Video)
WorldDreamer还可以基于文本进行视频生成。

仅仅给定语言文本输入,此时WorldDreamer认为所有的视频帧都是被掩码的视觉Token,并对这部分Token进行预测。

下图展示了WorldDreamer在各种风格范式下从文本生成视频的能力。

生成的视频与输入语言无缝契合,其中用户输入的语言可以塑造视频内容、风格和相机运动。
在这里插入图片描述

视频修改(Video Inpainting)
WorldDreamer进一步可以实现视频的inpainting任务。

具体来说,给定一段视频,用户可以指定mask区域,然后根据语言的输入可以更改被mask区域的视频内容。

如下图所示,WorldDreamer可以将水母更换为熊,也可以将蜥蜴更换为猴子,且更换后的视频高度符合用户的语言描述。

在这里插入图片描述

视频风格化(Video Stylization)
除此以外,WorldDreamer可以实现视频的风格化。

如下图所示,输入一个视频段,其中某些像素被随机掩码,WorldDreamer可以改变视频的风格,例如根据输入语言创建秋季主题效果。
在这里插入图片描述
基于动作合成视频(Action to Video)
WorldDreamer也可以实现在自动驾驶场景下的驾驶动作到视频的生成。

如下图所示,给定相同的初始帧以及不同的驾驶策略(如左转、右转),WorldDreamer可以生成高度符合首帧约束以及驾驶策略的视频。

在这里插入图片描述

那么,WorldDreamer又是怎样实现这些功能的呢?

用Transformer构建世界模型
研究人员认为,目前最先进的视频生成方法主要分为两类——基于Transformer的方法和基于扩散模型的方法。

利用Transformer进行Token预测可以高效学习到视频信号的动态信息,并可以复用大语言模型社区的经验,因此,基于Transformer的方案是学习通用世界模型的一种有效途径。

而基于扩散模型的方法难以在单一模型内整合多种模态,且难以拓展到更大参数,因此很难学习到通用世界的变化和运动规律。

而当前的世界模型研究主要集中在游戏、机器人和自动驾驶领域,缺乏全面捕捉通用世界变化和运动规律的能力。

所以,研究团队提出了WorldDreamer来加强对通用世界的变化和运动规律的学习理解,从而显著增强视频生成的能力。

借鉴大型语言模型的成功经验,WorldDreamer采用Transformer架构,将世界模型建模框架转换为一个无监督的视觉Token预测问题。

具体的模型结构如下图所示:

在这里插入图片描述

WorldDreamer首先使用视觉Tokenizer将视觉信号(图像和视频)编码为离散的Token。

这些Token在经过掩蔽处理后,输入给研究团队提出的Sptial Temporal Patchwuse Transformer(STPT)模块。

同时,文本和动作信号被分别编码为对应的特征向量,以作为多模态特征一并输入给STPT。

STPT在内部对视觉、语言、动作等特征进行充分的交互学习,并可以预测被掩码部分的视觉Token。

最终,这些预测出的视觉Token可以用来完成各种各样的视频生成和视频编辑任务。

在这里插入图片描述
在这里插入图片描述

值得注意的是,在训练WorldDreamer时,研究团队还构建了Visual-Text-Action(视觉-文本-动作)数据的三元组,训练时的损失函数仅涉及预测被掩蔽的视觉Token,没有额外的监督信号。

而在团队提出的这个数据三元组中,只有视觉信息是必须的,也就是说,即使在没有文本或动作数据的情况下,依然可以进行WorldDreamer的训练。

这种模式不仅降低了数据收集的难度,还使得WorldDreamer可以支持在没有已知或只有单一条件的情况下完成视频生成任务。

研究团队使用大量数据对WorldDreamer进行训练,其中包括20亿经过清洗的图像数据、1000万段通用场景的视频、50万段高质量语言标注的视频、以及近千段自动驾驶场景视频。

团队对10亿级别的可学习参数进行了百万次迭代训练,收敛后的WorldDreamer逐渐理解了物理世界的变化和运动规律,并拥有了各种的视频生成和视频编辑能力。

论文地址:https://arxiv.org/abs/2401.09985

项目主页:https://world-dreamer.github.io/

更多作品:https://heehel.com/category/ai-works

AIGC专区:https://heehel.com/category/aigc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/667523.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

问题:胚珠裸露于心皮上,无真正的果实的植物为() #经验分享#媒体

问题:胚珠裸露于心皮上,无真正的果实的植物为() A.双子叶植物 B.被子植物 C.单子叶植物 D.裸子植物 参考答案如图所示

黑豹程序员-封装组件-Vue3 setup方式子组件传值给父组件

需求 封装组件 需要使用到Vue3中如何定义父子组件&#xff0c;由子组件给父组件传值 核心代码 如何使用emits 组件 <template><button click"sendData">点击按钮</button> </template><script setup> import {ref, defineEmits}…

【节选】Go语言的100个错误使用场景|数据类型

Data types &#x1f31f; 章节概述&#xff1a; 基本类型涉及的常见错误 掌握 slice 和 map 的基本概念&#xff0c;避免使用时产生 bug 值的比较 低效的切片初始化&#xff08;#21&#xff09; 实现一个 conver 方法&#xff0c;将一个切片 Foo 转换成另一个类型的切片 Ba…

4.函数是特殊的对象 - JS

万物皆是对象&#xff0c;一切存为数据/值。对象是值&#xff0c;函数也是值。 行为对象 - 函数 函数是可以被调用的“行为/动作对象”&#xff0c;一个函数就是一个行为/动作。作为对象的基本操作都适用&#xff0c;如增/删属性&#xff0c;按引用传递等。 属性 name name …

基于若依的ruoyi-nbcio流程管理系统自定义业务回写状态的一种新方法(二)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/n…

vue的简单学习_大屏

一、 vue-cli的配置 1.1 vue-cli的安装 npm install -g vue/cli # 或 yarn global add vue/cli # 使用npm install -g vue/cli安装出现npm warn错误。通过npm install -g yarn 然后使用第二条命令下载。下载后并没有将vue加到环境变量中&#xff0c;需要在c盘中找到路径加到环…

【MATLAB源码-第136期】基于matlab的变色龙群优化算法CSA)无人机三维路径规划,输出做短路径图和适应度曲线

操作环境&#xff1a; MATLAB 2022a 1、算法描述 变色龙群优化算法&#xff08;Chameleon Swarm Algorithm&#xff0c;CSA&#xff09;是一种新颖的群体智能优化算法&#xff0c;受到自然界中变色龙捕食和社交行为的启发。变色龙以其独特的适应能力而著称&#xff0c;能够根…

前缀和与差分

前缀和 S [ i ] Σ i j 1 A [ j ] S [ i − 1 ] A [ i ] \text{S}\left[ \text{i} \right] \underset{\text{j}1}{\overset{\text{i}}{\Sigma}}\text{A}\left[ \text{j} \right] \text{S}\left[ \text{i}-1 \right] \text{A}\left[ \text{i} \right] S[i]j1Σi​A[j]S[i−1…

后端程序员入门react笔记(一)

相关参考 react 首先&#xff0c;我们先大概了解一下什么是react以及react可以干什么。 React 是 Facebook 开源的一个用于构建用户界面的一款 JavaScript 库&#xff0c;主要用于构建 UI。 react的特点 声明式编程 react使用jsx进行渲染&#xff0c;这是一种类似html的语法…

打开双重el-dialog后出现遮罩后如何解决?

背景&#xff1a; 打开el-dialog后&#xff0c;再次打开另外一个el-dialog&#xff0c;出现以下画面。 解决方式&#xff1a;在第二个el-dialog增加append-to-body <el-dialog :close-on-click-modal“true” :visible.sync“createVisible” v-if“createVisible” :width…

算法提升——LeetCode383场周赛总结

周赛题目 边界上的蚂蚁 边界上有一只蚂蚁&#xff0c;它有时向左走&#xff0c;有时向右走。 给你一个非零整数数组nums。蚂蚁会按顺序读取nums中的元素&#xff0c;从第一个元素开始直到结束。每一步&#xff0c;蚂蚁会根据当前元素的值移动&#xff1a; 如果nums[i]<0…

BLIP-2:低计算视觉-语言预训练大模型

BLIP-2 BLIP 对比 BLIP-2BLIPBLIP-2如何在视觉和语言模型之间实现有效的信息交互&#xff0c;同时降低预训练的计算成本&#xff1f;视觉语言表示学习视觉到语言的生成学习模型架构设计 总结主要问题: 如何在计算效率和资源有限的情况下&#xff0c;有效地结合冻结的图像编码器…

Ray on ACK 实践探索之旅 - RayCluster 篇

作者&#xff1a;张杰、霍智鑫、行疾 什么是 Ray&#xff1f; Ray 是一个开源框架&#xff0c;专为构建可扩展的分布式应用程序而设计&#xff0c;旨在通过提供简单直观的 API&#xff0c;简化分布式计算的复杂性&#xff0c;让开发者能够便捷高效地编写并行和分布式 Python …

【MySQL】- 09 Select Count

【MySQL】- 09 Select Count 1认识COUNT2 COUNT(列名)、COUNT(常量)和COUNT(*)之间的区别3 COUNT(*)的优化 4 COUNT(*)和COUNT(1)5 COUNT(字段)总结 数据库查询相信很多人都不陌生&#xff0c;所有经常有人调侃程序员就是CRUD专员&#xff0c;这所谓的CRUD指的就是数据库的增删…

文心一言 VS 讯飞星火 VS chatgpt (194)-- 算法导论14.3 2题

二、用go语言&#xff0c;改写 INTERVAL-SEARCH 的代码&#xff0c;使得当所有区间都是开区间时&#xff0c;它也能正确地工作。 文心一言&#xff0c;代码正常运行&#xff1a; 在Go语言中&#xff0c;处理开区间&#xff08;open intervals&#xff09;时&#xff0c;我们需…

Qt环境搭建+简单程序实现

Qt是什么 Qt是一个跨平台的C图形用户界面应用程序框架。 框架的本质就是一群大佬发明的让菜鸡写出来的代码也也比较规范 也就是限制程序员的自由&#xff0c;让程序员写出来的代码规范。 库和框架有相似性。 库是被程序员调用的&#xff0c;&#xff08;程序员是主体&…

prettier和eslint冲突怎么解决?

前提&#xff1a;项目中已安装&#xff1a;eslint&#xff0c;prettier&#xff0c;已配置.eslintrc和.prettierrc eslint&#xff1a;用来校验和处理js文件&#xff0c;逻辑和格式问题 prettier&#xff1a;用来校验和处理js文件&#xff0c;css文件&#xff0c;html文件&…

06 - python操作xml

认识XML 与HTML很像&#xff0c;是一种将数据存储在标记之间的标记语言&#xff0c;用户可以自定义自己的标记。 XML文件可以表示称为&#xff1a;XML树。这个XML树从根元素开始&#xff0c;根元素进一步分支到子元素。XML文件的每个元素都是XML树的一个节点&#xff0c;没有…

Liunx基本指令

目录 1、ls 列出当前路径下的文件 2、pwd 打印当前工作目录 (print working directory) 3、cd 进入路径 4、mkdir 创建文件夹(make dirctory) 5、touch 创建文件 6、cp 复制(copy) 7、mv 移动/剪切、重命名 8、rm 删除 (remover) 9、vim 文本编辑器 10、cat 打开文件…

Flink实战五_直播礼物统计

接上文&#xff1a;Flink实战四_TableAPI&SQL 1、需求背景 现在网络直播平台非常火爆&#xff0c;在斗鱼这样的网络直播间&#xff0c;经常可以看到这样的总榜排名&#xff0c;体现了主播的人气值。 人气值计算规则&#xff1a;用户发送1条弹幕互动&#xff0c;赠送1个荧…