【节选】Go语言的100个错误使用场景|数据类型

Data types

🌟 章节概述:

  • 基本类型涉及的常见错误

  • 掌握 slice 和 map 的基本概念,避免使用时产生 bug

  • 值的比较

低效的切片初始化(#21)

实现一个 conver 方法,将一个切片 Foo 转换成另一个类型的切片 Bar,这里给出三种实现方式:

// 方式一
func convert(foos []Foo) []Bar {bars := make([]Bar, 0)for _, foo := range foos {bars = append(bars, fooToBar(foo))}return bars
}
// 方式二
func convert(foos []Foo) []Bar {n := len(foos)// 设置容量但是不设置长度,此时append调用会从0索引开始为底层数组赋值bars := make([]Bar, 0, n)for _, foo := range foos {bars = append(bars, fooToBar(foo))}return bars
}
// 方式三
func convert(foo []Foo) []Bar {n := len(foo)// 设置len之后,会初始化这部分的值为Foo的零值,此时append会追加在len之后,触发扩容bars := make([]Bar, n)for i, foo := range foos {bars[i] = fooToBar(foo)}return bars
}

  • 方式一:由于没有初始化切片的长度,因此切片随着 append 逐渐扩容,不断替换底层数组,增加 GC 压力,在已知切片长度的时候,不推荐使用。

  • 方式二和方式三:单就性能来说方式三会更好一点,因为不用调用 append 操作。但是在大多数情况下方式二的表述更为清晰。因为如果遇到 convert 方法内有复杂逻辑,直接使用索引去为 bars[i] 设置值不太方便。

🌟 如果有一个场景是需要将一个 Foo 切片转换成一个两倍长度的 Bar 切片,则使用索引复制的方式看起来将不太清晰,且不易维护:

// 方式二
func convert(foos []Foo) []Bar {n := len(foos)// 设置容量但是不设置长度,此时append调用会从0索引开始为底层数组赋值bars := make([]Bar, 0, 2*n)for _, foo := range foos {bars = append(bars, fooToBar(foo))bars = append(bars, fooToBar(foo))}return bars
}
// 方式三
func convert(foo []Foo) []Bar {n := len(foo)// 设置len之后,会初始化这部分的值为Foo的零值,此时append会追加在len之后,触发扩容bars := make([]Bar, 2*n)for i, foo := range foos {bars[2*i] = fooToBar(foo)bars[2*i+1] = fooToBar(foo)}return bars
}

切片为 nil 与为空混淆(#22)

两个概念:

  • 一个切片为空,如果它的长度是0

  • 一个切片为nil,如果这个切片等于nil

func main {var s []string // 方式一long(1, s) s = []string(nil) // 方式二log(2, s)s = []string{} // 方式三log(3, s)s = make([]string, 0) // 方式四log(4, s)
}func log(i int, s []string) {fmt.Printf("%d: empty=%t\tnil=%t\n", i, len(s) == 0, s == nil)
}
// 输出结果
1: empty=true nil=true // 方式一
2: empty=true nil=true // 方式二
3: empty=true nil=false // 方式三
4: empty=true nil=false // 方式四

所有切片的 len 都是0,因此 nil 切片也是空切片。在探究哪种初始化切片之前,需要提示两点:

  • 空切片和 nil 切片的区别在于是否分配地址,初始化一个 nil 切片不会发生地址分配(底层数组)。

  • 无论切片是空还是 nil,内置的 append 方法都可以直接调用。

因此如果需要初始化一个 nil 切片,推荐上述方式一(var s []string);如果需要初始化一个长度为0的空切片,则使用方式四(make([]string, 0))。

当然如果你需要初始化一个已知长度的切片,不仅仅是空切片,也推荐方式四:

func intsToStrings(ints []int) []string {// 使用 make([]string, 0, len(ints)) 以及 append 的方式也是可以的s := make([]string, len(ints))for i, v := range ints {s[i] = strconv.Itoa(v)}
}

  • 方式二的意义:

s := append([]string(nil), "32")

类似语法糖的用法,可以用一行代码完成切片初始化和添加元素的编写。

  • 方式三使用场景分析:

s := []string{"1", "2", "3"}

如果初始化切片但是不设置初始元素 s := []string{},则不如使用方式一 var s []string 进行初始化。方式三应该用在需要指定初始化值的切片时。

留意空切片(empty but non-nil)和 nil 切片(empty and nil)在一些库中会发生不同处理:

  • encoding/json 库中,针对 marshal 序列化方法,空切片序列化为 [],而 nil 切片序列化为 null。

  • 标准库 reflect.DeepEqual 方法中,比较 nil 和 空切片返回 false。

没有正确检查切片是否为空(#23)

示例代码1:

func handleOperations(id string) {operations := getOperations(id)if operations != nil {handle(operations)}
}func getOperations(id string) []float32 {operations := make([]float32, 0)if if == "" {return operations}// ... 相关逻辑return operations
}

假设调用 getOperations 得到 []float32 切片后,通过判断它是否为 nil 来决定是否执行 handle 方法,但事实上,getOperations 方法从来都不会返回 nil,因此这种情况下 handle(operations) 一定会触发。

此时有两种修改方式:

  1. 修改被调用方(不推荐):

func getOperations(id string) []float32 {operations := make([]float32, 0)if if == "" {return nil // 返回一个 nil 切片}return operations
}

此时调用方代码中 operations != nil 确实可以生效,但是作为被调用方的函数来说,本身是无法预计所有被调用的场景的,并且什么时候返回 nil,什么时候返回空,不应该通过习惯去约束。

🌟 而应该在在调用方 handleOperations 侧做更通用的判断。

  1. 修改调用方:

func handleOperations(id string) {operations := getOperations(id)if len(operations) != 0 {handle(operations)}
}

因为无论切片是 nil 还是空,都会满足 len(operations) != 0 这个条件。

错误的切片拷贝(#24)

错误示例:

src := []int{0, 1, 2}
var dst []int
copy(dst, src)
fmt.Println(dst) // 输出 [] 而不是 [0, 1, 2]

原因在于内置的 copy 函数,拷贝的切片的元素个数等于:min(len(dst), len(src))

修正方案:

src := []int{0, 1, 2}
dst := make([]int, len(src))
copy(dst, src)
fmt.Println(dst) // 输出 [0, 1, 2]

通过 append 方法实现拷贝切片的功能:

src := []int{0, 1, 2}
dst := append([]int(nil), src...)

通过这种方式,将一个切片追加到一个 nil 切片之中,此时 dst 切片的长度和容量都为3。

切片使用 append 的副作用(#25)

示例代码:

s1 := []int{1, 2, 3}
s2 := s1[1:2]
s3 := append(s2, 10)
fmt.Println(s1, s2, s3) // [1, 2, 10] [2] [2, 10]

image-20240201203622818

当执行完上述第三行代码,s1 切片的第三个元素也发生了修改。

这种情况也发生在将切片作为参数传递给某个函数:

func main() {s := []int{1, 2, 3}f(s[:2])fmt.Println(s) // [1, 2, 10]
}func f(s []int) {_ = append(s, 10)
}

🌟 有两种方法可以避免这个问题。

方法一:

func main() {s := []int{1, 2, 3}sCopy := make([]int, 2)copy(sCopy, s)f(sCopy)fmt.Println(s) // [1, 2, 3]
}

在传入切片之前,将其通过 copy 函数拷贝一份,则无论其是否在 f 中被改动,将不会影响 s。

方法二:

func main() {s := []int{1, 2, 3}f(s[:2:2])
}

切片截取 s[low:high:max] 前两个参数左闭右开控制切片区间,第三个参数控制新切片的容量(max-low)。

image-20240201204656995

由于此时通过 s[:2:2] 创建的切片容量是2,如果在 f 函数内对其进行 append 操作时,由于 len 已经等于 cap,将触发扩容,导致其底层数组将引用一个新的二倍扩容后的数组。

切片和内存泄漏(#26)

🌟 场景一:切片容量泄漏

func consumeMessages() {for {msg := receiveMessage() // 假设每次msg都是一个长度为1000000的字节切片storeMessageType(getMessageType(msg))}
}// 字符切片截取函数,截取前5个字符
func getMessageType(msg []byte) []byte {return msg[:5]
}

这个场景不断输入大小为 1M 的字节切片,截取前五个字节存储。如果一共有1000个切片传入,程序运行之后,内存占用将达到1G。

分析原因:

image-20240202102753557

for 循环内,getMessageType() 函数每次在调用之后,虽然 msg 切片变量已经不在被引用,从而被 GC 回收,但是底层的数组没有收到影响。

即 getMessageType() 函数每次截取前5个字符,但是 msg[:5] 切片的 cap 值依旧是1M,Go 语言并不会自动回收其余部分的内存占用。

解决方案:

// 有效方案
func getMessageType(msg []byte) []byte {msgType := make([]byte, 5)copy(msgType, msg)return msgType
}
// 无效方案
func getMessageType(msg []byte) []byte {return msg[:5:5]
}

通过 copy 创建新的切片存放5个字节,使得原 msg 以及底层数组解除引用从而在 for 循环后被 GC 回收。但是通过 msg[:5:5] 方式创建切片,虽然限制了索引5之后的位置的访问,但是 Go 语言目前不支持自动回收这部分无法访问的内存。

🌟 场景二:切片和引用

type Foo struct {v []byte
}func main() {foos := make([]Foo, 1_000)printAlloc()for i := 0; i < len(foos); i++ {foos[i] = Foo{v: make([]byte, 1024*1024),}}printAlloc()two := keepFirstTwoElementsOnly(foos)runtime.GC()printAlloc()runtime.KeepAlive(two) // 保持对变量two的引用
}func keepFirstTwoElementsOnly(foos []Foo) []Foo {return foos[:2]
}func printAlloc() {var m runtime.MemStats // 记录内存分配runtime.ReadMemStats(&m)fmt.Printf("%d KB\n", m.Alloc/1024)
}
// 结果展示
95 KB // 分配了1000个零值的 Foo 结构
1024098 KB // 为长度为1000的 Foo 切片的 v 属性分配内存1024*1024
1024101 KB // 虽然截取前两个元素,但是后998个Foo以及其内部v的内存依旧占用

⚠️ 注意:如果切片的元素是引用类型或者是一个内部有引用类型的结构,在这个元素被回收之前,则这个元素所指向内容将不会被 GC 自动回收。(引用链依旧存在)

解决方案:

// 方式一
func keepFirstTwoElementsOnly(foos []Foo) []Foo {res := make([]Foo, 2)copy(res, foos)return res
}
// 方式二
func keepFirstTwoElementsOnly(foos []Foo) []Foo {for i := 2; i < len(foos); i++ {foos[i].v = nil}return foos[:2]
}

方式一:通过上面反复提及的 copy 创建一个新的切片实现赋值,此时新切片 len 和 cap 都是2。原切片 foos 由于不再被引用,则整体全部被 GC 回收,包括每个 Foo 结构的 v 切片。

方式二:通过手动将索引2至999的 Foo 结构的 v 切片手动设置为 nil,此时后998个 Foo 元素的 v 切片底层数组失去引用,会被 GC 回收。与方式一的区别在于,for 循环之后,foos[:2] 新切片 len 为2但是 cap 依旧为1000。

image-20240202112830971

🌟 使用这两种方案自行权衡效率,方案一需要遍历0至i-1的元素,方案二需要遍历i至n-1的元素。

低效的 Map 初始化(#27)

🌟 map 的实现:

image-20240202114039583

map 本质是一个 hash table,以数组的形式组织一系列的 bucket,每个 bucket 固定存放8个键值对,根据 key 的 hash 结果,决定这个 key-value 存放在哪个索引的 bucket 中。

image-20240202114310003

如果相同 hash 值的键值对超过8个,则会创建一个新的 bucket,被前一个 bucket 链式引用,因此最差情况下,查询效率会退化成 O(p),p 等价于这个 bucket 链条中键值对的个数。

🌟 map 的初始化:

mp := map[string]int {"1": 1,"2", 2,"3", 3
}

当逐渐向这个 map 添加 1_000_000 个键值对,达到某些条件时会触发 map 的扩容,因为 map 的设计上不会允许 hash 值相同的 bucket 链无限延长,这失去了 hash table 的效率。

🌟 扩容时机:

  1. 负载因子:当 bucket 的平均容量超过6.5。

  2. 太多的 bucket 溢出(包含超过8个键值对)。

在这两种情况下,map 会触发扩容,增加 hash array 的长度,并重建整个 map,重新整理和平衡各个 bucket 链。这种情况下,会导致绝大多数键值对重新分配,因此简单的一次 insert 操作,性能可能就跌落为 O(N),N 为当前 map 的所有键值对数量。

🌟 高效的初始化:

mp := make(map[string]int, 1_000_000)

与切片的初始化类似,通过指定希望存放的键值对的个数,map 的内置初始化流程会根据输入的容量,创建一个合适大小的 map。这为后续存入 1_000_000 免去了 map 扩容导致的重建开销。

同样的,指定 1_000_000 大小,不意味着这个 map 只能存放这么多键值对,这只是提示给 Go runtime 去分配至少能容纳 1_000_000 键值对的空间。

// 分配1_000_000容量的 banchmarks,性能相差约60%
InitiateMapWithoutSize  6       227413490 ns/op
InitiateMapWithSize     13		 91174193 ns/op

Map 和内存泄漏(#28)

概念:Go 语言的 Map 只能增长大小,并不能自动收缩,即使内部元素被删除。

场景分析:

n := 1_000_000
m := make(map[int][128]byte)
printAlloc()for i := 0; i < n; i++ {m[i] = randBytes() // 获取长度128的字符切片
}
printAlloc()for i := 0; i < n; i++ {delete(m, i)
}runtime.GC()
printAlloc()
runtime.KeepAlive(m) // 保持对m的引用,避免被回收
// 打印结果展示
0 MB
461 MB
293 MB

第一次打印:由于初始化的是空的切片,因此没有分配内存。

第二次打印:添加了一百万个字符数组。

第三次打印:虽然从 map 中删除了这一百万个字符数组,但是内存占用依旧很大。

🌟 原因分析:

type hmap struct {B uint8 // 2^B 个 buckets// ...
}

Go 语言的 map 底层实现是一个 hmap 结构,有一个 B 字段存放 map 的 buckets 的个数,这个场景下,存放 1_000_000 个键值对,B == 18,2^18 == 262144 个 buckets。

当 delete 1_000_000 个键值对之后,B 依旧是18,意味着 buckets 没有减少,只是将 bucket 对应的插槽设置为0值。

因此如果用 map 做缓存,当 map 某一时间段扩容到很大情况时,后续访问量下降,这个 map 还是占用很大的内存空间。

🌟 解决方案:

  • 方案一:使用 map 做缓存,则根据时间,定期新创建一个 map,去存放旧 map 的元素,人工去释放旧 map。(缺点在于在下次 GC 触发之前,会占用两倍内存,并且拷贝 map 中元素也需要花费时间,同时需要考虑并发安全)。

  • 方案二:将键值对的值元素使用指针替换:map[int]*[128]byte,这种情况下,bucket 中 value 占用的内存将限制在一个指针的大小(bucket 的插槽变小了),通过 delete 操作删除所有键值对,最后即使 map 的 bucket 数量无法减少,但是占用内存减少比较明显。(因为实际指向的 [128]byte 数组失去了引用,被回收)。

image-20240202133210171

⚠️ 注意:当使用 map 时,如果 key/value 的长度超过 128 bytes,Go 将会默认使用指针存放 bucket 的键值对。

错误的值比较方式(#29)

使用逻辑运算符不可比较的数据类型:

  • 切片

  • map

使用逻辑运算符可比较的数据类型:

  • 布尔型:比较两个 Booleans 是否相等

  • 数值型:比较数值是否相等

  • Strings:比较字符串是否相等

  • Channels:比较两个 channel 是否通过相同的 make 创建,或者是否都是 nil

  • Interfaces:比较两个接口的动态类型和动态值,或者是否都是 nil

  • Pointers:比较两个指针指向的内存中的 value 是否相等,或者是否都是 nil

  • 结构体和数组:整合上述可比较的数据类型,依次比较

针对不可使用逻辑运算符比较的数据类型,可以使用 Go 的反射去实现运行时的比较(递归),使用前建议阅读文档:

cust1 := customer{id: "x", operations: []float64{1.}}
cust2 := customer{id: "x", operations: []float64{1.}}
fmt.Println(reflect.DeepEqual(cust1, cust2)) // true

此时即使结构体存在不可比较的切片类型,依旧可以打印出 true。

🌟 使用反射比较需要注意的点:

  1. 集合为空和集合为 nil 是不同的概念(这在 #22 中提到了),需要留意。

  2. 反射是在运行时确定值的,因此性能很差,通常来说比 == 差两个数量级(100倍)。因此反射可以使用在单元测试中,而不是程序运行时。

自定义 compare 方法代替 reflect.DeepEqual()

func (a customer) equal(b customer) bool {if a.id != b.id {return false}if len(a.operations) != len(b.operations) {return false}for i := 0; i < len(a.operations); i++ {if a.operations[i] != b.operations[i] {return false}}return true
}

经过 benchmark 测试,使用自定义的 equal 方法比较两个切片是否相等,比使用反射快96倍。

📒 提示:针对数据类型的比较,可以选择开源的第三方的库。

文章转载自:白泽talk

原文链接:https://www.cnblogs.com/YLTFY1998/p/18003138

体验地址:引迈 - JNPF快速开发平台_低代码开发平台_零代码开发平台_流程设计器_表单引擎_工作流引擎_软件架构

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/667520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于若依的ruoyi-nbcio流程管理系统自定义业务回写状态的一种新方法(二)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/n…

【MATLAB源码-第136期】基于matlab的变色龙群优化算法CSA)无人机三维路径规划,输出做短路径图和适应度曲线

操作环境&#xff1a; MATLAB 2022a 1、算法描述 变色龙群优化算法&#xff08;Chameleon Swarm Algorithm&#xff0c;CSA&#xff09;是一种新颖的群体智能优化算法&#xff0c;受到自然界中变色龙捕食和社交行为的启发。变色龙以其独特的适应能力而著称&#xff0c;能够根…

前缀和与差分

前缀和 S [ i ] Σ i j 1 A [ j ] S [ i − 1 ] A [ i ] \text{S}\left[ \text{i} \right] \underset{\text{j}1}{\overset{\text{i}}{\Sigma}}\text{A}\left[ \text{j} \right] \text{S}\left[ \text{i}-1 \right] \text{A}\left[ \text{i} \right] S[i]j1Σi​A[j]S[i−1…

后端程序员入门react笔记(一)

相关参考 react 首先&#xff0c;我们先大概了解一下什么是react以及react可以干什么。 React 是 Facebook 开源的一个用于构建用户界面的一款 JavaScript 库&#xff0c;主要用于构建 UI。 react的特点 声明式编程 react使用jsx进行渲染&#xff0c;这是一种类似html的语法…

打开双重el-dialog后出现遮罩后如何解决?

背景&#xff1a; 打开el-dialog后&#xff0c;再次打开另外一个el-dialog&#xff0c;出现以下画面。 解决方式&#xff1a;在第二个el-dialog增加append-to-body <el-dialog :close-on-click-modal“true” :visible.sync“createVisible” v-if“createVisible” :width…

BLIP-2:低计算视觉-语言预训练大模型

BLIP-2 BLIP 对比 BLIP-2BLIPBLIP-2如何在视觉和语言模型之间实现有效的信息交互&#xff0c;同时降低预训练的计算成本&#xff1f;视觉语言表示学习视觉到语言的生成学习模型架构设计 总结主要问题: 如何在计算效率和资源有限的情况下&#xff0c;有效地结合冻结的图像编码器…

Ray on ACK 实践探索之旅 - RayCluster 篇

作者&#xff1a;张杰、霍智鑫、行疾 什么是 Ray&#xff1f; Ray 是一个开源框架&#xff0c;专为构建可扩展的分布式应用程序而设计&#xff0c;旨在通过提供简单直观的 API&#xff0c;简化分布式计算的复杂性&#xff0c;让开发者能够便捷高效地编写并行和分布式 Python …

【MySQL】- 09 Select Count

【MySQL】- 09 Select Count 1认识COUNT2 COUNT(列名)、COUNT(常量)和COUNT(*)之间的区别3 COUNT(*)的优化 4 COUNT(*)和COUNT(1)5 COUNT(字段)总结 数据库查询相信很多人都不陌生&#xff0c;所有经常有人调侃程序员就是CRUD专员&#xff0c;这所谓的CRUD指的就是数据库的增删…

文心一言 VS 讯飞星火 VS chatgpt (194)-- 算法导论14.3 2题

二、用go语言&#xff0c;改写 INTERVAL-SEARCH 的代码&#xff0c;使得当所有区间都是开区间时&#xff0c;它也能正确地工作。 文心一言&#xff0c;代码正常运行&#xff1a; 在Go语言中&#xff0c;处理开区间&#xff08;open intervals&#xff09;时&#xff0c;我们需…

Qt环境搭建+简单程序实现

Qt是什么 Qt是一个跨平台的C图形用户界面应用程序框架。 框架的本质就是一群大佬发明的让菜鸡写出来的代码也也比较规范 也就是限制程序员的自由&#xff0c;让程序员写出来的代码规范。 库和框架有相似性。 库是被程序员调用的&#xff0c;&#xff08;程序员是主体&…

06 - python操作xml

认识XML 与HTML很像&#xff0c;是一种将数据存储在标记之间的标记语言&#xff0c;用户可以自定义自己的标记。 XML文件可以表示称为&#xff1a;XML树。这个XML树从根元素开始&#xff0c;根元素进一步分支到子元素。XML文件的每个元素都是XML树的一个节点&#xff0c;没有…

Flink实战五_直播礼物统计

接上文&#xff1a;Flink实战四_TableAPI&SQL 1、需求背景 现在网络直播平台非常火爆&#xff0c;在斗鱼这样的网络直播间&#xff0c;经常可以看到这样的总榜排名&#xff0c;体现了主播的人气值。 人气值计算规则&#xff1a;用户发送1条弹幕互动&#xff0c;赠送1个荧…

在线JSON转SQL工具

在线JSON转SQL - BTool在线工具软件&#xff0c;为开发者提供方便。在线JSON转SQL工具可以将JSON文件中的数据或者JSON对象转换为SQL插入语句&#xff0c;方便用户将数据导入到数据库中。用户可以通过简单的界面上传JSON文件&#xff0c;或者文本框输入&#xff0c;点击JSON转S…

Redis——SpringBoot整合Redis实战

1、基本配置 1.1、引入依赖 首先&#xff0c;建立Maven项目&#xff0c;在Maven项目中引入pom.xml文件&#xff1a; <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> &l…

计算机网络_1.6.3 计算机网络体系结构分层思想举例

1.6.3 计算机网络体系结构分层思想举例 1、实例引入&#xff08;用户在主机中使用浏览器访问web服务器&#xff09;2、从五层原理体系结构的角度研究该实例3、练习题 笔记来源&#xff1a; B站 《深入浅出计算机网络》课程 本节通过一个常见的网络应用实例&#xff0c;来介绍计…

灵活应对:策略模式在软件设计中的应用

策略模式是一种行为型设计模式&#xff0c;它允许定义一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以互换使用。策略模式让算法的变化独立于使用算法的客户端&#xff0c;使得在不修改原有代码的情况下切换或扩展新的算法成为可能。 使用策略模式的场景包…

android inset 管理

目录 简介 Insets管理架构 Insets相关类图 app侧的类 WMS侧的类 inset show的流程 接口 流程 WMS侧确定InsetsSourceControl的流程 两个问题 窗口显示时不改变现有的inset状态 全屏窗口上的dialog 不显示statusbar问题 View 和 DecorView 设置insets信息 输入法显…

幻兽帕鲁客户端存档文件 - 云上备份和恢复教程

本文将详细介绍如何将幻兽帕鲁游戏客户端的存档文件备份至云端&#xff0c;以及如何从云端恢复存档数据至本地。 一、游戏存档备份场景 幻兽帕鲁的游戏进度存储在电脑本地磁盘上&#xff0c;游戏中创建的每个世界都对应一个本地存档文件夹。在玩游戏过程中&#xff0c;客户端…

智能边缘计算网关实现高效数据处理与实时响应-天拓四方

在当今时代&#xff0c;数据已经成为驱动业务决策的关键因素。然而&#xff0c;传统的数据处理方式往往存在延迟&#xff0c;无法满足实时性要求。此时&#xff0c;智能边缘计算网关应运而生&#xff0c;它能够将数据处理和分析的能力从中心服务器转移至设备边缘&#xff0c;大…

基于单片机控制的智能门锁设计

摘要&#xff1a;阐述基于STC15F2K60S2单片机控制的智能门锁设计&#xff0c;包括CPU控制单元模块、液晶显示LCD、 Wi-Fi模块&#xff0c;实现远程控制开门&#xff0c;密码开门的智能化功能。 关键词&#xff1a;控制技术&#xff0c;单片机&#xff0c;智能门锁&#xff0c;…