最新!2024顶级SCI优化!TTAO-CNN-BiGRU-MSA三角拓扑聚合优化、双向GRU融合注意力的多变量回归预测程序!

适用平台:Matlab 2023版及以上

TTOA三角聚合优化算法,将在2024年3月正式发表在中科院1区顶级SCI期刊《Expert Systems with Applications》上。

该算法提出时间极短,目前以及近期内不会有套用这个算法的文献。新年伊始,尽快拿下!

我们利用该创新性极高的优化算法对我们的CNN-BiGRU-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化,构成TTAO-CNN-BiGRU-MSA多变量回归预测模型.

文献解读:这个算法的启发来源是类似三角形的拓扑学性质。名为Triangulation Topology Aggregation Optimizer,TTAO)的新型数学元启发算法中,每个三角形拓扑单元表示一个搜索个体。TTAO算法通过聚合形成不同大小的类似三角形拓扑单元,以作为基本的进化单元。与其他元启发算法不同,TTAO算法提出了一种新的进化指导模式,主要依靠每个三角形单元中的最佳个体指导单元内个体的进化。因此,这种进化种群不仅依赖于全局引导的优秀个体,还吸收了每个单元中最佳个体的有效正向信息,有助于解决复杂优化问题,克服传统方法在全局搜索时进入局部极值的缺点。接下来,文章通过与其它对比算法:HHO ;SCSO;SAO;BWO;AOA等测试,验证了TTAO算法具有更强的收敛性能。在CEC2017函数和8个工程问题上评估了其优化性能。实验结果表明,TTAO算法在30维CEC2017函数上具有优越的收敛性和稳定性。

原理:许多领域通常将研究对象划分为三角形拓扑单元,并建立相关模型进行识别和分析:如金字塔,三角尺等。

在有限或无限维空间中,三角形拓扑可以被视为二维子空间的子图。与其他拓扑相比,三角形在某些封闭系统中更简单、更稳定。

TTAO算法主要通过以下两个阶段进行优化过程:

  • ①不同单元之间的聚合

  • ②相似三角形单元内的聚合

在这个过程中,不断在搜索空间中生成新的顶点,并用它们构建不同大小的相似三角形。TTAO算法将每个三角形视为具有四个个体的基本进化单元,即三角形的三个顶点和一个内部随机顶点。聚合的核心是将具有优良特性的顶点分组在一起。具体来说,TTAO算法通过聚合在不同拓扑单元之间或内部收集具有正向信息的顶点,不断构建相似三角形。

优化步骤:

  • 算法通过迭代进化,在搜索空间中不断生成新的顶点,以构建不同大小的相似三角形。

  • 每个三角形都被视为一个基本进化单元,包含四个搜索个体,即三角形的三个顶点和一个内部随机顶点。

  • TTAO算法的核心是聚集具有优越特性的顶点。具体而言,TTAO算法通过聚集来自不同拓扑单元的优秀个体信息,以创建新的可行解。

  • 算法通过三个阶段的更新过程来实现全局搜索和局部挖掘:生成三角拓扑单元、通用聚集和局部聚集。

构成的TTAO-CNN-BiGRU-MSA多变量回归预测模型的创新性在于以下几点:

TTAO算法区别于传统智能算法的创新性:

①细胞聚类策略:TTAO 算法采用三角形拓扑单元展开优化过程,每个三角形拓扑单元具有一个顶点,这些顶点分别代表了搜索个体。这种细胞聚类策略使得 TTAO 算法能够更好地挖掘局部和全局信息。

②两级聚合策略:TTAO 算法采用了两级聚合策略:广义聚合和局部聚合。广义聚合主要关注全局探索,通过不同三角形拓扑单元间的信息交换来找到更有希望的位置;局部聚合则使得每个单元内的信息得到有效开发,确保准确地探索局部区域。

③自适应策略:TTAO 算法将上一代的有效信息自适应地继承下来,从而保持种群的多样性。这种自适应策略使得 TTAO 算法能够快速收敛到全局最优解。

④个体引导进化策略:TTAO算法提出了一种新的关键个体引导进化策略,使得该算法不仅依赖于精英个体的全局引导进化,还吸收了每个单元中最佳个体的积极正向信息。

优化套用—基于三角拓扑聚合优化算法(TTAO)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制(Multi-Head Self Attention,MSA)的超前24步多变量时间序列回归预测算法TTOA-CNN-BiGRU-MSA

功能:

1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2、通过TTAO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。

3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。

4、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

数据集格式:

前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比;训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0);适应度曲线(误差逐渐下降)

误差评估:

TTAO部分核心代码:

完整代码:https://mbd.pub/o/bread/ZZqZlZ1y
%  三角拓扑聚合优化器
function [fbest,Xbest,Convergence_curve,BestPred,bestNet,bestInfo]=TTAOtest(PopSize,T,Low,Up,Dim,fobj)N=floor(PopSize/3); % 初始化N/3个个体。
X1=rand(N,Dim).*(Up-Low)+Low;
t=1;
while t<T+1%% 形成三角拓扑单元l=9*exp(-t/T);% 三角拓扑单元的大小。for i=1:Ntheta=rand(1,Dim)*pi;h1=cos(theta);h2=cos(theta+pi/3);X2(i,:)=X1(i,:)+l*h1;X3(i,:)=X1(i,:)+l*h2;endX2 = max(X2,Low);X2 = min(X2,Up);X3 = max(X3,Low);X3 = min(X3,Up);r1=rand;r2=rand;X4=r1*X1+r2.*X2+(1-r1-r2)*X3;X4 = max(X4,Low);X4 = min(X4,Up);for i=1:N[X1_fit(i), value1{i},Net1{i},Info1{i}] =fobj(X1(i,:));[X2_fit(i), value2{i},Net2{i},Info2{i}] =fobj(X2(i,:));[X3_fit(i), value3{i},Net3{i},Info3{i}] =fobj(X3(i,:));[X4_fit(i), value4{i},Net4{i},Info4{i}] =fobj(X4(i,:));endX=[X1 X2 X3 X4];fit=[X1_fit;X2_fit;X3_fit;X4_fit];value = [value1; value2; value3; value4];Net = [Net1; Net2; Net3; Net4];Info = [Info1; Info2; Info3; Info4];[X_sort,index]=sort(fit);%% 在每个三角拓扑单元中找到最优点和次优点。for i=1:NX_best_1(i,:)=X(i,(index(1,i)-1)*Dim+1:index(1,i)*Dim);X_best_2(i,:)=X(i,(index(2,i)-1)*Dim+1:index(2,i)*Dim);endbest_fit_1=X_sort(1,:);best_fit_2=X_sort(2,:);sorted_value(:, 1) = value(index(:, 1), 1);sorted_value(:, 2) = value(index(:, 2), 2);best_value_1 = sorted_value(1,:);best_value_2 = sorted_value(2,:);sorted_Net(:, 1) = Net(index(:, 1), 1);sorted_Net(:, 2) = Net(index(:, 2), 2);best_Net_1 = sorted_Net(1,:);best_Net_2 = sorted_Net(2,:);sorted_Info(:, 1) = Info(index(:, 1), 1);sorted_Info(:, 2) = Info(index(:, 2), 2);best_Info_1 = sorted_Info(1,:);best_Info_2 = sorted_Info(2,:);%% 通用聚合for i=1:Nr=rand(1,Dim);X_new=X_best_1;X_new(i,:)=[];l1=randi(N-1);X_G(i,:)=(r.*X_best_1(i,:)+(ones(1,Dim)-r).*X_new(l1,:));X_G(i,:) = max(X_G(i,:),Low);X_G(i,:) = min(X_G(i,:),Up);[X_fit_G(i), valueG{i},NetG{i},InfoG{i}]=fobj(X_G(i,:));if X_fit_G(i)<best_fit_1(i)X_best_1(i,:)=X_G(i,:);best_fit_1(i)=X_fit_G(i);best_value_1{i}=valueG{i};best_Net_1{i}=NetG{i};best_Info_1{i}=InfoG{i};elseif X_fit_G(i)<best_fit_2(i)X_best_2(i,:)=X_G(i,:);best_value_2{i}=valueG{i};best_Net_2{i}=NetG{i};best_Info_2{i}=InfoG{i};endend%% 局部聚合for i=1:Na=(exp(1)-(exp(1))^3)/(T-1);b=(exp(1))^3-a;alpha=log(a*t+b);X_C(i,1:Dim)=X_best_1(i,1:Dim)+alpha*(X_best_1(i,1:Dim)-X_best_2(i,1:Dim));X_C(i,:) = max(X_C(i,:),Low);X_C(i,:) = min(X_C(i,:),Up);[X_fit_C(i), valueC{i},NetC{i},InfoC{i}]=fobj(X_C(i,:));if X_fit_C(i)<best_fit_1(i)X_best_1(i,:)=X_C(i,:);best_fit_1(i)=X_fit_C(i);best_value_1{i}=valueC{i};best_Net_1{i}=NetC{i};best_Info_1{i}=InfoC{i};endend%% N00=PopSize-N*3;if N00~=0X00=rand(PopSize-N*3,Dim).*(Up-Low)+Low;for i=1:N00[X00_fit,value00{i},Net00{i},Info00{i}]=fobj(X00(i,:));endX_1_0=[X_best_1;X00];X_1_0_fit=[best_fit_1,X00_fit];value_1_0=[best_value_1;value00];Net_1_0=[best_Net_1;Net00];Info_1_0=[best_Info_1;Info00];[~,index01]=sort(X_1_0_fit);X_best_1=X_1_0(index01(1:N),:);best_value_1=value_1_0(index01(1:N),:);best_Net_1=Net_1_0(index01(1:N),:);best_Info_1=Info_1_0(index01(1:N),:);best_fit_1=X_1_0_fit(index01(1:N));endX1=X_best_1;%% 前N/3个个体作为下一次迭代的初始种群。

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴“复制代码上方链接”或“联系小编”获得完整版代码哦~,关注小编会继续推送更有质量的学习资料、文章程序代码~

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/663228.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

主机安全加固之-openssh版本升级

升级openssh之前&#xff0c;为了保证能正常通过工具连接主机&#xff0c;咱们开启telnet服务&#xff0c;通过telnet的方式登录主机 一&#xff1a;开启telnet服务 1.安装telnet服务 [rootlocalhost ~]# yum install –y telnet telnet-server xinetd2.修改telnet服务配置文…

Docker中安装MySql的遇到的问题

目录 一、mysql查询中文乱码问题 1. 进入mysql中进行查看数据库字符集 2. 修改 my.cnf 中的配置 3. 重启mysql容器&#xff0c;使得容器重新加载配置文件 4. 测试结果 二、主从同步中遇到的问题 2.1 Slave_IO_Running:Connecting 的解决方案 1. 确定宿主机防火墙开放my…

留学生怎么合理使用ChatGPT ?还有哪些同类工具可以使用?

一篇篇相关于ChatGPT的文章陆陆续续铺天盖地的出现在我们面前。今天我们来看看怎么使用这个宝藏工具&#xff01; 文章主要内容为&#xff1a; 1.它是什么&#xff1f; 2.它能做什么&#xff1f; 3.作为留学生我们怎么使用它&#xff1f; 4.其他同类工具推荐 5.个人观点 一…

unity addressables 加载资源和场景 显示进度条(主要用于WebGL)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、addressables是什么&#xff1f;二、导入Addressables三、创建Addressables Settings 资产包管理四、资源打包五、环境模拟六、查看重复资源七、选择Bundle…

算法——A/算法通识

目录 一、复杂度分析 A/时间复杂度 B/空间复杂度 C/分析技巧 二、枚举分析 A/枚举算法介绍 B/解空间的类型 C/循环枚举解空间 三、模拟算法 四、递归 A/递归介绍 递归的两个关键要素&#xff1a; B/递归如何实现 C/递归和循环的比较 一、复杂度分析 A/时间复杂度…

央视见证|“看见中国汽车”走进首家汽车供应链企业东软睿驰

由工业和信息化部支持指导&#xff0c;中国汽车工业协会和央视网联合出品的2023《看见中国汽车》专题东软睿驰篇正式上线&#xff0c;记录品牌向上专项行动走进首家汽车供应链企业&#xff0c;展示东软睿驰围绕“成为OEM 软件定义汽车时代最可信赖的合作伙伴”核心战略的创新发…

深入探索Java BIO与NIO输入输出模型:基于文件复制和socket通信

在Java中&#xff0c;处理I/O&#xff08;输入/输出&#xff09;操作的方式经历了从BIO&#xff08;Blocking I/O&#xff0c;阻塞式I/O&#xff09;到NIO&#xff08;New I/O 或 Non-blocking I/O&#xff0c;新I/O或非阻塞式I/O&#xff09;的演变。这两种模型在设计和使用上…

[C++]类和对象(中)

一:类的六个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。空类中并不是什么都没有&#xff0c;任何类在什么都不写时&#xff0c;编译器会自动生成以下6个默认成员函数。默认成员函数&#xff1a;用户没有显式实现&#xff0c;编译器会生成的成员函数称为…

使用Python的Turtle模块简单绘制烟花效果

import turtle import random# 初始化屏幕 screen turtle.Screen() screen.bgcolor("black") screen.title("烟花模拟")# 创建一个Turtle来绘制烟花 firework turtle.Turtle() firework.hideturtle() firework.speed(0) # 设置绘图速度为最快# 绘制烟花…

GEDepth:Ground Embedding for Monocular Depth Estimation

参考代码&#xff1a;gedepth 出发点与动机 相机的外参告诉了相机在世界坐标系下的位置信息&#xff0c;那么可以用这个外参构建一个地面基础深度作为先验&#xff0c;后续只需要在这个地面基础深度先验基础上添加offset就可以得到结果深度&#xff0c;这样可以极大简化深度估…

springboot与springcloud之间的版本对应关系

https://start.spring.io/actuator/info 当然&#xff0c;你可以直接在&#xff1a; https://spring.io/projects/spring-cloud 上看文档查询&#xff0c; 不过&#xff0c;最后应该是调到这里的&#xff1a; https://github.com/spring-cloud/spring-cloud-release/wiki/Suppo…

C++:输入流/输出流

C流类库简介 C为了克服C语言中的scanf和printf存在的缺点。&#xff0c;使用cin/cout控制输入/输出。 cin&#xff1a;表示标准输入的istream类对象&#xff0c;cin从终端读入数据。cout&#xff1a;表示标准输出的ostream类对象&#xff0c;cout向终端写数据。cerr&#xff…

stable diffusion微调总结

stable diffusion微调总结 stable diffusion模型类别&#xff1a;SDSD2SDXLSDXL LCM&#xff08;潜在一致性模型&#xff09;SDXL DistilledSDXL Turbo 安装accelerate通过pip安装配置 accelerate config查看配置 安装diffusers数据处理BLIP模型优化 微调方法Dreambooth微调准备…

静态代理IP是如何助力跨境电商运营的?

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

微信小程序 安卓/IOS兼容问题

一、背景 在开发微信小程序时&#xff0c;不同的手机型号会出现兼容问题&#xff0c;特此记录一下 二、安卓/IOS兼容问题总结 2.1、new Date()时间转换格式时&#xff0c;IOS不兼容 问题&#xff1a;在安卓中时间格式2024-1-31 10:10:10&#xff0c;但是在iOS中是不支持 &q…

jQuery前段开发--星级评价和图形跟随指针移动

一、实验原理&#xff1a; 当鼠标移入某个星星&#xff0c;前面的星星都会被点亮&#xff1b;当鼠标移出&#xff0c;星星将会变暗&#xff0c;单击某个星星后&#xff0c;即可完成评论&#xff0c;此时鼠标移出后&#xff0c;被单击星星前面的星星都会被点亮&#xff0c;后面…

幻兽帕鲁社区服务器搭建架设开服教程(LINUX)

幻兽帕鲁社区服务器搭建架设开服教程&#xff08;LINUX&#xff09; 大家好我是艾西&#xff0c;上一期我给大家分享了windows系统版本的幻兽帕鲁服务器搭建教程。因为幻兽帕鲁这游戏对于服务器的配置有一定的要求很多小伙伴就思考用linux系统搭建的话占用会不会小一点&#x…

华为云CodeArts Snap荣获信通院优秀大模型案例及两项荣誉证书

2024年1月25日&#xff0c;中国人工智能产业发展联盟智能化软件工程工作组&#xff08;AI for Software Engineering&#xff0c;下文简称AI4SE&#xff09;在京召开首届“AI4SE创新巡航”活动。在活动上&#xff0c;华为云大模型辅助系统测试代码生成荣获“2023AI4SE银弹优秀案…

代码随想录算法训练营第二十四天| 77. 组合。

77. 组合 题目链接&#xff1a;组合 题目描述&#xff1a; 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 解题思路&#xff1a; 本题是经典的回溯法解决的组合问题&#xff0c;回溯问题搞清楚纵向递归横向遍历即…

混乱字母排序——欧拉路数论

题目描述 小明接到一个神秘的任务&#xff1a;对于给定的 n 个没有顺序的字母对&#xff08;无序代表这两个字母可以前后顺序颠倒&#xff0c;区分大小写&#xff09;。请构造一个有 (n1) 个字母的混乱字符串使得每个字母对都在这个字符串中出现。 输入输出格式 输入格式 第…