自然语言处理中的词云生成

一.词云的介绍

自然语言处理中的词云技术是文本可视化的一种形式,用于展示文本数据中词语的频率分布。以下是词云在自然语言处理中的基本介绍和发展:

起源和发展: 词云的概念最初来源于信息可视化领域,用于将文本中的关键词以视觉方式呈现。在自然语言处理中,词云得到了广泛的应用,特别是在文本分析、舆情分析、关键词提取等任务中。

工作原理: 词云生成的基本原理是通过文本中每个词的频率来确定词语的大小,频率高的词显示更大,频率低的词显示更小。一般来说,生成词云的过程包括文本的分词、词频统计和可视化展示。

文本清洗和预处理: 为了生成有意义的词云,需要对文本进行清洗和预处理。这包括去除停用词、标点符号,进行分词等。清洁的文本有助于更准确地反映文本的主题和关键词。

技术工具: Python中的WordCloud库是一个常用的工具,用于生成词云。此外,其他数据可视化库如Matplotlib、Seaborn等也可以与词云生成库结合使用。

应用领域: 词云技术在自然语言处理中广泛应用于文本可视化、舆情分析、主题分析、关键词提取等任务。它为用户提供了直观、易懂的方式来了解文本数据的重要特征。

发展趋势: 随着自然语言处理和数据可视化技术的不断发展,词云技术也在不断演进。近年来,一些先进的可视化方法和工具被引入,使得生成更具交互性和信息密度的词云成为可能。

总体而言,词云作为一种简单而直观的文本可视化工具,对于初步了解文本数据的关键信息非常有用。然而,在更复杂的文本分析任务中,更先进的自然语言处理技术和可视化方法可能被采用。

二.基本步骤

词云是一种可视化技术,常用于展示文本数据中词语的频率分布。在自然语言处理中,词云生成可以通过以下步骤完成:

1.1 文本数据处理: 首先,需要准备文本数据。这可以是一段文章、评论、新闻等文本内容。确保文本数据已经被清理、分词,并去除了停用词(常见但无实际意义的词语)。

1.2 词频统计: 对处理后的文本进行词频统计,计算每个词语在文本中的出现频率。这可以通过简单的计数或使用专业的自然语言处理库进行。

1.3 生成词云图: 使用词云生成工具或库,将词频统计结果转换为可视化的词云图。常用的工具包括Python中的WordCloud库。

1.4 调整参数: 根据需求,可以调整词云生成的参数,例如字体、颜色、形状等。这有助于生成更具吸引力和表现力的词云图。

1.5 可视化展示: 将生成的词云图进行可视化展示。这可以通过将词云嵌入到网页、报告中,或直接显示在应用程序中。

三.案例分析

相关数据集如下链接
https://download.csdn.net/download/qq_37977007/88767801

# 1.导入模块包
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
# 2.创建停用词的列表
stopwords = [line.strip() for line in open('english_stopwords.txt', 'r', encoding='utf-8').readlines()]
# 3.对句子进行分词
def seg_sentence(sentence):words_sentence = jieba.cut(sentence.strip())outstr = ''for word_sentence in words_sentence:if word_sentence not in stopwords:if word_sentence != '\t':outstr = outstr + word_sentenceoutstr = outstr + " "return outstr
if __name__ == "__main__":# 4.读取文本,对文本的句子进行分词inputs =  open('wordcloud.txt', 'r', encoding='utf8')outputs = open('output.txt', 'w')for line in inputs:line_Seg = seg_sentence(line)outputs.write(line_Seg)outputs.close()inputs.close()# 5.调用词云库构建词云,保存结果wordcloud = open('output.txt', 'r')mytext = wordcloud.read()wordcloud = WordCloud(width=2000,height=2000,max_words=20,min_word_length=4, background_color="white").generate(mytext)plt.imshow(wordcloud)plt.show()plt.savefig('result.png')plt.axis('off')

在这里插入图片描述

四.词云中的参数介绍

在生成词云时,通常可以设置一些参数来调整词云的外观和生成方式。以下是一些常见的词云参数及其介绍:

width和height:介绍: 指定词云图的宽度和高度。示例: WordCloud(width=800, height=400)background_color:介绍: 指定词云的背景颜色。示例: WordCloud(background_color="white")max_words:介绍: 指定词云中显示的最大单词数量。示例: WordCloud(max_words=100)collocations:介绍: 控制是否考虑词汇搭配(collocations),即词语之间的共现关系。示例: WordCloud(collocations=False)stopwords:介绍: 指定停用词列表,这些词将被排除在词云之外。示例: WordCloud(stopwords={"the", "and", "is"})font_path:介绍: 指定用于词云的字体文件路径。示例: WordCloud(font_path="path/to/font.ttf")max_font_size:介绍: 控制词云中最大字体的大小。示例: WordCloud(max_font_size=50)min_font_size:介绍: 控制词云中最小字体的大小。示例: WordCloud(min_font_size=10)random_state:介绍: 用于控制词云生成的随机性,设置相同的值可以得到相同的输出。示例: WordCloud(random_state=42)mask:介绍: 指定用作词云形状的蒙版图像,词云将在该形状内生成。示例: WordCloud(mask=mask_image)

这只是一些常见的参数,具体使用时可以根据需要调整。不同的词云生成库可能有不同的参数设置,具体参考相应库的文档。

五.词云相关的官方代码如下

# coding=utf-8
# Author: Andreas Christian Mueller <t3kcit@gmail.com>
#
# (c) 2012
# Modified by: Paul Nechifor <paul@nechifor.net>
#
# License: MITfrom __future__ import divisionimport warnings
from random import Random
import io
import os
import re
import base64
import sys
import colorsys
import matplotlib
import numpy as np
from operator import itemgetter
from xml.sax import saxutilsfrom PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFilter
from PIL import ImageFontfrom .query_integral_image import query_integral_image
from .tokenization import unigrams_and_bigrams, process_tokensFILE = os.path.dirname(__file__)
FONT_PATH = os.environ.get('FONT_PATH', os.path.join(FILE, 'DroidSansMono.ttf'))
STOPWORDS = set(map(str.strip, open(os.path.join(FILE, 'stopwords')).readlines()))class IntegralOccupancyMap(object):def __init__(self, height, width, mask):self.height = heightself.width = widthif mask is not None:# the order of the cumsum's is important for speed ?!self.integral = np.cumsum(np.cumsum(255 * mask, axis=1),axis=0).astype(np.uint32)else:self.integral = np.zeros((height, width), dtype=np.uint32)def sample_position(self, size_x, size_y, random_state):return query_integral_image(self.integral, size_x, size_y,random_state)def update(self, img_array, pos_x, pos_y):partial_integral = np.cumsum(np.cumsum(img_array[pos_x:, pos_y:],axis=1), axis=0)# paste recomputed part into old image# if x or y is zero it is a bit annoyingif pos_x > 0:if pos_y > 0:partial_integral += (self.integral[pos_x - 1, pos_y:]- self.integral[pos_x - 1, pos_y - 1])else:partial_integral += self.integral[pos_x - 1, pos_y:]if pos_y > 0:partial_integral += self.integral[pos_x:, pos_y - 1][:, np.newaxis]self.integral[pos_x:, pos_y:] = partial_integraldef random_color_func(word=None, font_size=None, position=None,orientation=None, font_path=None, random_state=None):"""Random hue color generation.Default coloring method. This just picks a random hue with value 80% andlumination 50%.Parameters----------word, font_size, position, orientation  : ignored.random_state : random.Random object or None, (default=None)If a random object is given, this is used for generating randomnumbers."""if random_state is None:random_state = Random()return "hsl(%d, 80%%, 50%%)" % random_state.randint(0, 255)class colormap_color_func(object):"""Color func created from matplotlib colormap.Parameters----------colormap : string or matplotlib colormapColormap to sample fromExample------->>> WordCloud(color_func=colormap_color_func("magma"))"""def __init__(self, colormap):import matplotlib.pyplot as pltself.colormap = plt.cm.get_cmap(colormap)def __call__(self, word, font_size, position, orientation,random_state=None, **kwargs):if random_state is None:random_state = Random()r, g, b, _ = np.maximum(0, 255 * np.array(self.colormap(random_state.uniform(0, 1))))return "rgb({:.0f}, {:.0f}, {:.0f})".format(r, g, b)def get_single_color_func(color):"""Create a color function which returns a single hue and saturation with.different values (HSV). Accepted values are color strings as usable byPIL/Pillow.>>> color_func1 = get_single_color_func('deepskyblue')>>> color_func2 = get_single_color_func('#00b4d2')"""old_r, old_g, old_b = ImageColor.getrgb(color)rgb_max = 255.h, s, v = colorsys.rgb_to_hsv(old_r / rgb_max, old_g / rgb_max,old_b / rgb_max)def single_color_func(word=None, font_size=None, position=None,orientation=None, font_path=None, random_state=None):"""Random color generation.Additional coloring method. It picks a random value with hue andsaturation based on the color given to the generating function.Parameters----------word, font_size, position, orientation  : ignored.random_state : random.Random object or None, (default=None)If a random object is given, this is used for generating randomnumbers."""if random_state is None:random_state = Random()r, g, b = colorsys.hsv_to_rgb(h, s, random_state.uniform(0.2, 1))return 'rgb({:.0f}, {:.0f}, {:.0f})'.format(r * rgb_max, g * rgb_max,b * rgb_max)return single_color_funcclass WordCloud(object):r"""Word cloud object for generating and drawing.Parameters----------font_path : stringFont path to the font that will be used (OTF or TTF).Defaults to DroidSansMono path on a Linux machine. If you are onanother OS or don't have this font, you need to adjust this path.width : int (default=400)Width of the canvas.height : int (default=200)Height of the canvas.prefer_horizontal : float (default=0.90)The ratio of times to try horizontal fitting as opposed to vertical.If prefer_horizontal < 1, the algorithm will try rotating the wordif it doesn't fit. (There is currently no built-in way to get onlyvertical words.)mask : nd-array or None (default=None)If not None, gives a binary mask on where to draw words. If mask is notNone, width and height will be ignored and the shape of mask will beused instead. All white (#FF or #FFFFFF) entries will be considerd"masked out" while other entries will be free to draw on. [Thischanged in the most recent version!]contour_width: float (default=0)If mask is not None and contour_width > 0, draw the mask contour.contour_color: color value (default="black")Mask contour color.scale : float (default=1)Scaling between computation and drawing. For large word-cloud images,using scale instead of larger canvas size is significantly faster, butmight lead to a coarser fit for the words.min_font_size : int (default=4)Smallest font size to use. Will stop when there is no more room in thissize.font_step : int (default=1)Step size for the font. font_step > 1 might speed up computation butgive a worse fit.max_words : number (default=200)The maximum number of words.stopwords : set of strings or NoneThe words that will be eliminated. If None, the build-in STOPWORDSlist will be used. Ignored if using generate_from_frequencies.background_color : color value (default="black")Background color for the word cloud image.max_font_size : int or None (default=None)Maximum font size for the largest word. If None, height of the image isused.mode : string (default="RGB")Transparent background will be generated when mode is "RGBA" andbackground_color is None.relative_scaling : float (default='auto')Importance of relative word frequencies for font-size.  Withrelative_scaling=0, only word-ranks are considered.  Withrelative_scaling=1, a word that is twice as frequent will have twicethe size.  If you want to consider the word frequencies and not onlytheir rank, relative_scaling around .5 often looks good.If 'auto' it will be set to 0.5 unless repeat is true, in whichcase it will be set to 0... versionchanged: 2.0Default is now 'auto'.color_func : callable, default=NoneCallable with parameters word, font_size, position, orientation,font_path, random_state that returns a PIL color for each word.Overwrites "colormap".See colormap for specifying a matplotlib colormap instead.To create a word cloud with a single color, use``color_func=lambda *args, **kwargs: "white"``.The single color can also be specified using RGB code. For example``color_func=lambda *args, **kwargs: (255,0,0)`` sets color to red.regexp : string or None (optional)Regular expression to split the input text into tokens in process_text.If None is specified, ``r"\w[\w']+"`` is used. Ignored if usinggenerate_from_frequencies.collocations : bool, default=TrueWhether to include collocations (bigrams) of two words. Ignored if usinggenerate_from_frequencies... versionadded: 2.0colormap : string or matplotlib colormap, default="viridis"Matplotlib colormap to randomly draw colors from for each word.Ignored if "color_func" is specified... versionadded: 2.0normalize_plurals : bool, default=TrueWhether to remove trailing 's' from words. If True and a wordappears with and without a trailing 's', the one with trailing 's'is removed and its counts are added to the version withouttrailing 's' -- unless the word ends with 'ss'. Ignored if usinggenerate_from_frequencies.repeat : bool, default=FalseWhether to repeat words and phrases until max_words or min_font_sizeis reached.include_numbers : bool, default=FalseWhether to include numbers as phrases or not.min_word_length : int, default=0Minimum number of letters a word must have to be included.collocation_threshold: int, default=30Bigrams must have a Dunning likelihood collocation score greater than thisparameter to be counted as bigrams. Default of 30 is arbitrary.See Manning, C.D., Manning, C.D. and Schütze, H., 1999. Foundations ofStatistical Natural Language Processing. MIT press, p. 162https://nlp.stanford.edu/fsnlp/promo/colloc.pdf#page=22Attributes----------``words_`` : dict of string to floatWord tokens with associated frequency... versionchanged: 2.0``words_`` is now a dictionary``layout_`` : list of tuples ((string, float), int, (int, int), int, color))Encodes the fitted word cloud. For each word, it encodes the string, normalized frequency, font size, position, orientation, and color.The frequencies are normalized by the most commonly occurring word.The color is in the format of 'rgb(R, G, B).'Notes-----Larger canvases make the code significantly slower. If you need alarge word cloud, try a lower canvas size, and set the scale parameter.The algorithm might give more weight to the ranking of the wordsthan their actual frequencies, depending on the ``max_font_size`` and thescaling heuristic."""def __init__(self, font_path=None, width=400, height=200, margin=2,ranks_only=None, prefer_horizontal=.9, mask=None, scale=1,color_func=None, max_words=200, min_font_size=4,stopwords=None, random_state=None, background_color='black',max_font_size=None, font_step=1, mode="RGB",relative_scaling='auto', regexp=None, collocations=True,colormap=None, normalize_plurals=True, contour_width=0,contour_color='black', repeat=False,include_numbers=False, min_word_length=0, collocation_threshold=30):if font_path is None:font_path = FONT_PATHif color_func is None and colormap is None:version = matplotlib.__version__if version[0] < "2" and version[2] < "5":colormap = "hsv"else:colormap = "viridis"self.colormap = colormapself.collocations = collocationsself.font_path = font_pathself.width = widthself.height = heightself.margin = marginself.prefer_horizontal = prefer_horizontalself.mask = maskself.contour_color = contour_colorself.contour_width = contour_widthself.scale = scaleself.color_func = color_func or colormap_color_func(colormap)self.max_words = max_wordsself.stopwords = stopwords if stopwords is not None else STOPWORDSself.min_font_size = min_font_sizeself.font_step = font_stepself.regexp = regexpif isinstance(random_state, int):random_state = Random(random_state)self.random_state = random_stateself.background_color = background_colorself.max_font_size = max_font_sizeself.mode = modeif relative_scaling == "auto":if repeat:relative_scaling = 0else:relative_scaling = .5if relative_scaling < 0 or relative_scaling > 1:raise ValueError("relative_scaling needs to be ""between 0 and 1, got %f." % relative_scaling)self.relative_scaling = relative_scalingif ranks_only is not None:warnings.warn("ranks_only is deprecated and will be removed as"" it had no effect. Look into relative_scaling.",DeprecationWarning)self.normalize_plurals = normalize_pluralsself.repeat = repeatself.include_numbers = include_numbersself.min_word_length = min_word_lengthself.collocation_threshold = collocation_threshold# Override the width and height if there is a maskif mask is not None:self.width = mask.shape[1]self.height = mask.shape[0]def fit_words(self, frequencies):"""Create a word_cloud from words and frequencies.Alias to generate_from_frequencies.Parameters----------frequencies : dict from string to floatA contains words and associated frequency.Returns-------self"""return self.generate_from_frequencies(frequencies)def generate_from_frequencies(self, frequencies, max_font_size=None):  # noqa: C901"""Create a word_cloud from words and frequencies.Parameters----------frequencies : dict from string to floatA contains words and associated frequency.max_font_size : intUse this font-size instead of self.max_font_sizeReturns-------self"""# make sure frequencies are sorted and normalizedfrequencies = sorted(frequencies.items(), key=itemgetter(1), reverse=True)if len(frequencies) <= 0:raise ValueError("We need at least 1 word to plot a word cloud, ""got %d." % len(frequencies))frequencies = frequencies[:self.max_words]# largest entry will be 1max_frequency = float(frequencies[0][1])frequencies = [(word, freq / max_frequency)for word, freq in frequencies]if self.random_state is not None:random_state = self.random_stateelse:random_state = Random()if self.mask is not None:boolean_mask = self._get_bolean_mask(self.mask)width = self.mask.shape[1]height = self.mask.shape[0]else:boolean_mask = Noneheight, width = self.height, self.widthoccupancy = IntegralOccupancyMap(height, width, boolean_mask)# create imageimg_grey = Image.new("L", (width, height))draw = ImageDraw.Draw(img_grey)img_array = np.asarray(img_grey)font_sizes, positions, orientations, colors = [], [], [], []last_freq = 1.if max_font_size is None:# if not provided use default font_sizemax_font_size = self.max_font_sizeif max_font_size is None:# figure out a good font size by trying to draw with# just the first two wordsif len(frequencies) == 1:# we only have one word. We make it big!font_size = self.heightelse:self.generate_from_frequencies(dict(frequencies[:2]),max_font_size=self.height)# find font sizessizes = [x[1] for x in self.layout_]try:font_size = int(2 * sizes[0] * sizes[1]/ (sizes[0] + sizes[1]))# quick fix for if self.layout_ contains less than 2 values# on very small images it can be emptyexcept IndexError:try:font_size = sizes[0]except IndexError:raise ValueError("Couldn't find space to draw. Either the Canvas size"" is too small or too much of the image is masked ""out.")else:font_size = max_font_size# we set self.words_ here because we called generate_from_frequencies# above... hurray for good design?self.words_ = dict(frequencies)if self.repeat and len(frequencies) < self.max_words:# pad frequencies with repeating words.times_extend = int(np.ceil(self.max_words / len(frequencies))) - 1# get smallest frequencyfrequencies_org = list(frequencies)downweight = frequencies[-1][1]for i in range(times_extend):frequencies.extend([(word, freq * downweight ** (i + 1))for word, freq in frequencies_org])# start drawing grey imagefor word, freq in frequencies:if freq == 0:continue# select the font sizers = self.relative_scalingif rs != 0:font_size = int(round((rs * (freq / float(last_freq))+ (1 - rs)) * font_size))if random_state.random() < self.prefer_horizontal:orientation = Noneelse:orientation = Image.ROTATE_90tried_other_orientation = Falsewhile True:# try to find a positionfont = ImageFont.truetype(self.font_path, font_size)# transpose font optionallytransposed_font = ImageFont.TransposedFont(font, orientation=orientation)# get size of resulting textbox_size = draw.textsize(word, font=transposed_font)# find possible places using integral image:result = occupancy.sample_position(box_size[1] + self.margin,box_size[0] + self.margin,random_state)if result is not None or font_size < self.min_font_size:# either we found a place or font-size went too smallbreak# if we didn't find a place, make font smaller# but first try to rotate!if not tried_other_orientation and self.prefer_horizontal < 1:orientation = (Image.ROTATE_90 if orientation is None elseImage.ROTATE_90)tried_other_orientation = Trueelse:font_size -= self.font_steporientation = Noneif font_size < self.min_font_size:# we were unable to draw any morebreakx, y = np.array(result) + self.margin // 2# actually draw the textdraw.text((y, x), word, fill="white", font=transposed_font)positions.append((x, y))orientations.append(orientation)font_sizes.append(font_size)colors.append(self.color_func(word, font_size=font_size,position=(x, y),orientation=orientation,random_state=random_state,font_path=self.font_path))# recompute integral imageif self.mask is None:img_array = np.asarray(img_grey)else:img_array = np.asarray(img_grey) + boolean_mask# recompute bottom right# the order of the cumsum's is important for speed ?!occupancy.update(img_array, x, y)last_freq = freqself.layout_ = list(zip(frequencies, font_sizes, positions,orientations, colors))return selfdef process_text(self, text):"""Splits a long text into words, eliminates the stopwords.Parameters----------text : stringThe text to be processed.Returns-------words : dict (string, int)Word tokens with associated frequency...versionchanged:: 1.2.2Changed return type from list of tuples to dict.Notes-----There are better ways to do word tokenization, but I don't want toinclude all those things."""flags = (re.UNICODE if sys.version < '3' and type(text) is unicode  # noqa: F821else 0)pattern = r"\w[\w']*" if self.min_word_length <= 1 else r"\w[\w']+"regexp = self.regexp if self.regexp is not None else patternwords = re.findall(regexp, text, flags)# remove 'swords = [word[:-2] if word.lower().endswith("'s") else wordfor word in words]# remove numbersif not self.include_numbers:words = [word for word in words if not word.isdigit()]# remove short wordsif self.min_word_length:words = [word for word in words if len(word) >= self.min_word_length]stopwords = set([i.lower() for i in self.stopwords])if self.collocations:word_counts = unigrams_and_bigrams(words, stopwords, self.normalize_plurals, self.collocation_threshold)else:# remove stopwordswords = [word for word in words if word.lower() not in stopwords]word_counts, _ = process_tokens(words, self.normalize_plurals)return word_countsdef generate_from_text(self, text):"""Generate wordcloud from text.The input "text" is expected to be a natural text. If you pass a sortedlist of words, words will appear in your output twice. To remove thisduplication, set ``collocations=False``.Calls process_text and generate_from_frequencies...versionchanged:: 1.2.2Argument of generate_from_frequencies() is not return ofprocess_text() any more.Returns-------self"""words = self.process_text(text)self.generate_from_frequencies(words)return selfdef generate(self, text):"""Generate wordcloud from text.The input "text" is expected to be a natural text. If you pass a sortedlist of words, words will appear in your output twice. To remove thisduplication, set ``collocations=False``.Alias to generate_from_text.Calls process_text and generate_from_frequencies.Returns-------self"""return self.generate_from_text(text)def _check_generated(self):"""Check if ``layout_`` was computed, otherwise raise error."""if not hasattr(self, "layout_"):raise ValueError("WordCloud has not been calculated, call generate"" first.")def to_image(self):self._check_generated()if self.mask is not None:width = self.mask.shape[1]height = self.mask.shape[0]else:height, width = self.height, self.widthimg = Image.new(self.mode, (int(width * self.scale),int(height * self.scale)),self.background_color)draw = ImageDraw.Draw(img)for (word, count), font_size, position, orientation, color in self.layout_:font = ImageFont.truetype(self.font_path,int(font_size * self.scale))transposed_font = ImageFont.TransposedFont(font, orientation=orientation)pos = (int(position[1] * self.scale),int(position[0] * self.scale))draw.text(pos, word, fill=color, font=transposed_font)return self._draw_contour(img=img)def recolor(self, random_state=None, color_func=None, colormap=None):"""Recolor existing layout.Applying a new coloring is much faster than generating the wholewordcloud.Parameters----------random_state : RandomState, int, or None, default=NoneIf not None, a fixed random state is used. If an int is given, thisis used as seed for a random.Random state.color_func : function or None, default=NoneFunction to generate new color from word count, font size, positionand orientation.  If None, self.color_func is used.colormap : string or matplotlib colormap, default=NoneUse this colormap to generate new colors. Ignored if color_funcis specified. If None, self.color_func (or self.color_map) is used.Returns-------self"""if isinstance(random_state, int):random_state = Random(random_state)self._check_generated()if color_func is None:if colormap is None:color_func = self.color_funcelse:color_func = colormap_color_func(colormap)self.layout_ = [(word_freq, font_size, position, orientation,color_func(word=word_freq[0], font_size=font_size,position=position, orientation=orientation,random_state=random_state,font_path=self.font_path))for word_freq, font_size, position, orientation, _in self.layout_]return selfdef to_file(self, filename):"""Export to image file.Parameters----------filename : stringLocation to write to.Returns-------self"""img = self.to_image()img.save(filename, optimize=True)return selfdef to_array(self):"""Convert to numpy array.Returns-------image : nd-array size (width, height, 3)Word cloud image as numpy matrix."""return np.array(self.to_image())def __array__(self):"""Convert to numpy array.Returns-------image : nd-array size (width, height, 3)Word cloud image as numpy matrix."""return self.to_array()def to_svg(self, embed_font=False, optimize_embedded_font=True, embed_image=False):"""Export to SVG.Font is assumed to be available to the SVG reader. Otherwise, textcoordinates may produce artifacts when rendered with replacement font.It is also possible to include a subset of the original font in WOFFformat using ``embed_font`` (requires `fontTools`).Note that some renderers do not handle glyphs the same way, and maydiffer from ``to_image`` result. In particular, Complex Text Layout maynot be supported. In this typesetting, the shape or positioning of agrapheme depends on its relation to other graphemes.Pillow, since version 4.2.0, supports CTL using ``libraqm``. However,due to dependencies, this feature is not always enabled. Hence, thesame rendering differences may appear in ``to_image``. As thisrasterized output is used to compute the layout, this also affects thelayout generation. Use ``PIL.features.check`` to test availability of``raqm``.Consistant rendering is therefore expected if both Pillow and the SVGrenderer have the same support of CTL.Contour drawing is not supported.Parameters----------embed_font : bool, default=FalseWhether to include font inside resulting SVG file.optimize_embedded_font : bool, default=TrueWhether to be aggressive when embedding a font, to reduce size. Inparticular, hinting tables are dropped, which may introduce slightchanges to character shapes (w.r.t. `to_image` baseline).embed_image : bool, default=FalseWhether to include rasterized image inside resulting SVG file.Useful for debugging.Returns-------content : stringWord cloud image as SVG string"""# TODO should add option to specify URL for font (i.e. WOFF file)# Make sure layout is generatedself._check_generated()# Get output size, in pixelsif self.mask is not None:width = self.mask.shape[1]height = self.mask.shape[0]else:height, width = self.height, self.width# Get max font sizeif self.max_font_size is None:max_font_size = max(w[1] for w in self.layout_)else:max_font_size = self.max_font_size# Text bufferresult = []# Get font informationfont = ImageFont.truetype(self.font_path, int(max_font_size * self.scale))raw_font_family, raw_font_style = font.getname()# TODO properly escape/quote this name?font_family = repr(raw_font_family)# TODO better support for uncommon font styles/weights?raw_font_style = raw_font_style.lower()if 'bold' in raw_font_style:font_weight = 'bold'else:font_weight = 'normal'if 'italic' in raw_font_style:font_style = 'italic'elif 'oblique' in raw_font_style:font_style = 'oblique'else:font_style = 'normal'# Add headerresult.append('<svg'' xmlns="http://www.w3.org/2000/svg"'' width="{}"'' height="{}"''>'.format(width * self.scale,height * self.scale))# Embed font, if requestedif embed_font:# Import here, to avoid hard dependency on fonttoolsimport fontToolsimport fontTools.subset# Subset optionsoptions = fontTools.subset.Options(# Small impact on character shapes, but reduce size a lothinting=not optimize_embedded_font,# On small subsets, can improve sizedesubroutinize=optimize_embedded_font,# Try to be lenientignore_missing_glyphs=True,)# Load and subset fontttf = fontTools.subset.load_font(self.font_path, options)subsetter = fontTools.subset.Subsetter(options)characters = {c for item in self.layout_ for c in item[0][0]}text = ''.join(characters)subsetter.populate(text=text)subsetter.subset(ttf)# Export as WOFF# TODO is there a better method, i.e. directly export to WOFF?buffer = io.BytesIO()ttf.saveXML(buffer)buffer.seek(0)woff = fontTools.ttLib.TTFont(flavor='woff')woff.importXML(buffer)# Create stylesheet with embedded font facebuffer = io.BytesIO()woff.save(buffer)data = base64.b64encode(buffer.getbuffer()).decode('ascii')url = 'data:application/font-woff;charset=utf-8;base64,' + dataresult.append('<style>''@font-face{{''font-family:{};''font-weight:{};''font-style:{};''src:url("{}")format("woff");''}}''</style>'.format(font_family,font_weight,font_style,url))# Select global styleresult.append('<style>''text{{''font-family:{};''font-weight:{};''font-style:{};''}}''</style>'.format(font_family,font_weight,font_style))# Add backgroundif self.background_color is not None:result.append('<rect'' width="100%"'' height="100%"'' style="fill:{}"''>''</rect>'.format(self.background_color))# Embed image, useful for debug purposeif embed_image:image = self.to_image()data = io.BytesIO()image.save(data, format='JPEG')data = base64.b64encode(data.getbuffer()).decode('ascii')result.append('<image'' width="100%"'' height="100%"'' href="data:image/jpg;base64,{}"''/>'.format(data))# For each word in layoutfor (word, count), font_size, (y, x), orientation, color in self.layout_:x *= self.scaley *= self.scale# Get text metricsfont = ImageFont.truetype(self.font_path, int(font_size * self.scale))(size_x, size_y), (offset_x, offset_y) = font.font.getsize(word)ascent, descent = font.getmetrics()# Compute text bounding boxmin_x = -offset_xmax_x = size_x - offset_xmax_y = ascent - offset_y# Compute text attributesattributes = {}if orientation == Image.ROTATE_90:x += max_yy += max_x - min_xtransform = 'translate({},{}) rotate(-90)'.format(x, y)else:x += min_xy += max_ytransform = 'translate({},{})'.format(x, y)# Create nodeattributes = ' '.join('{}="{}"'.format(k, v) for k, v in attributes.items())result.append('<text'' transform="{}"'' font-size="{}"'' style="fill:{}"''>''{}''</text>'.format(transform,font_size * self.scale,color,saxutils.escape(word)))# TODO draw contour# Complete SVG fileresult.append('</svg>')return '\n'.join(result)def _get_bolean_mask(self, mask):"""Cast to two dimensional boolean mask."""if mask.dtype.kind == 'f':warnings.warn("mask image should be unsigned byte between 0"" and 255. Got a float array")if mask.ndim == 2:boolean_mask = mask == 255elif mask.ndim == 3:# if all channels are white, mask outboolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)else:raise ValueError("Got mask of invalid shape: %s" % str(mask.shape))return boolean_maskdef _draw_contour(self, img):"""Draw mask contour on a pillow image."""if self.mask is None or self.contour_width == 0:return imgmask = self._get_bolean_mask(self.mask) * 255contour = Image.fromarray(mask.astype(np.uint8))contour = contour.resize(img.size)contour = contour.filter(ImageFilter.FIND_EDGES)contour = np.array(contour)# make sure borders are not drawn before changing widthcontour[[0, -1], :] = 0contour[:, [0, -1]] = 0# use gaussian to change width, divide by 10 to give more resolutionradius = self.contour_width / 10contour = Image.fromarray(contour)contour = contour.filter(ImageFilter.GaussianBlur(radius=radius))contour = np.array(contour) > 0contour = np.dstack((contour, contour, contour))# color the contourret = np.array(img) * np.invert(contour)if self.contour_color != 'black':color = Image.new(img.mode, img.size, self.contour_color)ret += np.array(color) * contourreturn Image.fromarray(ret)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/654159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

64、ubuntu使用c++/python调用alliedvisio工业相机

基本思想&#xff1a;需要使用linux系统调用alliedvisio工业相机完成业务&#xff0c;这里只做驱动相机调用&#xff0c;具体不涉及业务开发 Alvium 相机选型 - Allied Vision 一、先用软件调用一下用于机器视觉和嵌入式视觉的Vimba X 软件开发包 - Allied Vision VimbaX_Set…

Prometheus的相关概念和部署

&#xff08;一&#xff09;Prometheus的相关概念 1、Prometheus&#xff1a;是一个开源的系统监控以及报警系统&#xff0c;整合zabbix的功能、系统、网络、设备 2、Prometheus可以兼容网络、设备&#xff0c;进行容器监控、告警系统 3、因为Prometheus和k8s是一个项目基金…

服务攻防-开发组件安全JacksonFastJson各版本XStreamCVE环境复现

知识点 1、J2EE-组件Jackson-本地demo&CVE&#xff08;数据处理&#xff09; 2、J2EE-组件FastJson-本地demo&CVE&#xff08;数据处理&#xff09; 3、J2EE-组件XStream-本地demo&CVE&#xff08;数据处理&#xff09; 章节点&#xff1a; 1、目标判断-端口扫描…

浅谈桌面云

桌面云是一种通过网络将可伸缩、弹性的共享物理或虚拟资源池按需供应和交付桌面的云服务模式。桌面操作系统运行于共享物理或虚拟资源池&#xff0c;用户可使用瘦客户机端或其他任何与网络相连的设备&#xff08;即终端设备&#xff0c;包括云终端、笔记本、普通PC、智能终端等…

脉宽调制器

1. pwm脉宽调制器 脉宽调制器: 一种硬件设备, 用于 动态调制 方波 的 一些属性, 方波的周期,频率,占空比 占空比? : 有效电平占 整个周期的比值 可以使用PWM 控制功率, 控制频率 用于 开关电源 或 逆变器 1.1 原理 PWM原理: 如图所示 本质就是一个定时器: 由原理…

【玩转Node.JS】=>(内置文件系统)fs模块

文章目录 概念&#xff1a;文件写入writeFile &#xff08;异步写入&#xff09;writeFileSync&#xff08;同步写入&#xff09;appendFile &#xff08;异步追加写入&#xff09;appendFileSync&#xff08;同步追加写入&#xff09;createWriteStream &#xff08;文件流式写…

服务攻防-开发框架安全SpringBootStruts2LaravelThinkPHPCVE复现

知识点&#xff1a; 1、PHP-框架安全-Thinkphp&Laravel 2、J2EE-框架安全-SpringBoot&Struts2 章节点&#xff1a; 1、目标判断-端口扫描&组合判断&信息来源 2、安全问题-配置不当&CVE漏洞&弱口令爆破 3、复现对象-数据库&中间件&开发框架&am…

Spring Boot通过配置文件支持数据库自定义表名

直接上干货&#xff1a; 例如一个叫xxx的项目&#xff0c;yml文件里加上这段 xxxproject:db:xxxTable: xxx_dbname #自定义的数据库表名创一个Configuration类放表名和Mapper // XxxProjectAutoConfiguration.javaConfiguration MapperScan(basePackages "cn.com.xxxp…

Vue3-插槽(本质也是组件间的交流)

默认插槽 当你在父组件中&#xff0c;有标签需要插入子组件中显示&#xff0c;就需要默认插槽 具名插槽 当你在父组件中&#xff0c;有多个标签需要放置子组件的不同位置时&#xff0c;就需要具名插槽 具名-----》 v-slot:s2 作用域插槽 父组件在插槽中想要使用子组件的值&…

Less-1(sqlmap自动注入攻击)--sqli

环境准备 打开火狐浏览器&#xff0c;进入sqli第一关的页面 工具准备 sqlmap 参数解释 -u URL 指定目标URL进行注入测试。--dataDATA指定POST请求的数据进行注入测试--cookieCOOKIE指定用于身份验证的cookie进行注入测试-p PARAMETER指定要测试的参数--levelLEVEL设置测试的深…

你不知道的Tomcat

Tomcat基本概念 Tomcat是一个Servlet容器&#xff0c;也是一个web容器。我们的请求通过浏览器进入到Tomcat&#xff0c;Tomcat再把请求分发对应的Servlet。 Tomcat核心组件 Connector: 连接器负责处理进入Tomcat的传入连接和请求&#xff0c;然后将它们传递给Server服务对象中…

Qt无边框窗口拖拽和阴影

先看下效果&#xff1a; 说明 自定义窗口控件的无边框,窗口事件由于没有系统自带边框,无法实现拖拽拉伸等事件的处理,一种方法就是重新重写主窗口的鼠标事件&#xff0c;一种时通过nativeEvent事件处理。重写事件相对繁琐,我们这里推荐nativeEvent处理。注意后续我们在做win平…

MySQL知识点总结(二)——explain执行计划、SQL优化

MySQL知识点总结&#xff08;二&#xff09;——explain执行计划、SQL优化 explain执行计划typepossible_keyskeysextra SQL优化SQL优化的流程SQL优化技巧范围查询优化排序优化分组查询优化distinct优化分页查询优化join关联查询优化排序分页 关联查询分组 关联查询 排序in与…

手把手带你Git入门,从下载到精通,常用git命令

文章目录 Git概述什么是GitGit历史Git是什么 为什么要使用Git什么是版本控制系统 Git和SVN对比SVN集中式SVN优缺点 Git分布式Git优缺点 Git工作流程四个工作区域工作流程 Git下载与安装下载window版下载64位软件包安装Git Git基础环境配置设置用户信息查看配置信息 文件的两种状…

ES6.8.6 创建索引配置分词器、映射字段指定分词器、查询数据高亮显示分词结果(内置分词器、icu、ik、pinyin分词器)

文章目录 ES环境内置分词器&#xff0c;以simple分词器示例查询创建索引simple_news&#xff0c;修改分词器为simple插入模拟数据分词查询&#xff1a;返回通过分词查询到的结果、高亮分词分词匹配&#xff1a;写一次示例&#xff0c;其他分词和匹配思路基本一致第一步&#xf…

DMA 和 零拷贝技术 到 网络大文件传输优化

文章目录 DMA 控制器的发展无 DMA 控制器 IO 过程DMA 控制器 传统文件传输性能有多糟糕&#xff1f;如何优化文件传输性能零拷贝技术mmap writesendfileSG-DMA&#xff08;The Scatter-Gather Direct Memory Access&#xff09; 零拷贝技术的应用 大文件传输应该用什么方式Pag…

后台管理系统模板搭建/项目配置

1 项目初始化 一个项目要有统一的规范&#xff0c;需要使用eslintstylelintprettier来对我们的代码质量做检测和修复&#xff0c;需要使用husky来做commit拦截&#xff0c;需要使用commitlint来统一提交规范&#xff0c;需要使用preinstall来统一包管理工具。 1.1 环境准备 1…

idea 创建 spring boot

1.创建步骤 2. 编码添加 2.1 这是自动生成的启动函数 package com.example.comxjctest4;import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication;SpringBootApplication public class Application {publi…

MySql的使用方法

一.什么是MySql MySql是一种数据库管理系统&#xff0c;是用来存储数据的&#xff0c;可以有效的管理数据&#xff0c;数据库的存储介质为硬盘和内存。 和文件相比&#xff0c;它具有以下优点&#xff1a; 文件存储数据是不安全的&#xff0c;且不方便数据的查找和管理&#xf…

【3分钟开服】幻兽帕鲁服务器一键部署保姆教程,PalWorld开服联机教程

在帕鲁的世界&#xff0c;你可以选择与神奇的生物「帕鲁」一同享受悠闲的生活&#xff0c;也可以投身于与偷猎者进行生死搏斗的冒险。帕鲁可以进行战斗、繁殖、协助你做农活&#xff0c;也可以为你在工厂工作。你也可以将它们进行售卖&#xff0c;或肢解后食用。 想要部署属于自…