大创项目推荐 题目:基于卷积神经网络的手写字符识别 - 深度学习

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的手写字符识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于竞赛课题。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2# -*- coding: utf-8 -*-#import modulesimport numpy as npimport matplotlib.pyplot as plt#from sklearn.metrics import confusion_matriximport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),"biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),"biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),"biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),"biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)train_batch_size = 50def optimize(num_iterations):total_iterations=0start_time = time.time()for i in range(total_iterations,total_iterations+num_iterations):x_batch,y_true_batch = data.train.next_batch(train_batch_size)feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}sess.run(optimizer,feed_dict=feed_dict_train_op)# Print status every 100 iterations.if i%100==0:# Calculate the accuracy on the training-set.acc = sess.run(accuracy,feed_dict=feed_dict_train)# Message for printing.msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"# Print it.print(msg.format(i+1,acc))# Update the total number of iterations performedtotal_iterations += num_iterations# Ending timeend_time = time.time()# Difference between start and end_times.time_dif = end_time-start_time# Print the time-usageprint("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))test_batch_size = 256def print_test_accuracy():# Number of images in the test-set.num_test = len(data.test.images)cls_pred = np.zeros(shape=num_test,dtype=np.int)i = 0while i < num_test:# The ending index for the next batch is denoted j.j = min(i+test_batch_size,num_test)# Get the images from the test-set between index i and jimages = data.test.images[i:j, :]# Get the associated labelslabels = data.test.labels[i:j, :]# Create a feed-dict with these images and labels.feed_dict={x:images,y_true:labels,keep_prob:1.0}# Calculate the predicted class using Tensorflow.cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)# Set the start-index for the next batch to the# end-index of the current batchi = jcls_true = data.test.clscorrect = (cls_true==cls_pred)correct_sum = correct.sum()acc = float(correct_sum) / num_test# Print the accuracymsg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"print(msg.format(acc,correct_sum,num_test))# Performance after 10000 optimization iterationsoptimize(num_iterations=10000)print_test_accuracy()savew_hl1 = layer_conv1["weights"].eval()saveb_hl1 = layer_conv1["biases"].eval()savew_hl2 = layer_conv2["weights"].eval()saveb_hl2 = layer_conv2["biases"].eval()savew_fc1 = fc1_layer["weights"].eval()saveb_fc1 = fc1_layer["biases"].eval()savew_op = fc2_layer["weights"].eval()saveb_op = fc2_layer["biases"].eval()np.save("savew_hl1.npy", savew_hl1)np.save("saveb_hl1.npy", saveb_hl1)np.save("savew_hl2.npy", savew_hl2)np.save("saveb_hl2.npy", saveb_hl2)np.save("savew_hl3.npy", savew_fc1)np.save("saveb_hl3.npy", saveb_fc1)np.save("savew_op.npy", savew_op)np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/653334.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring实战】31 Spring Boot3 集成 Gateway 微服务网关

文章目录 1. 定义2. 功能3. 示例代码1) 创建一个业务服务2&#xff09;创建一个网关服务3&#xff09;启动服务4&#xff09;验证 4. 代码参考结语 1. 定义 Spring Cloud Gateway 是一个基于 Spring Framework 的开源网关服务&#xff0c;用于构建微服务架构中的 API 网关。它…

C51 单片机学习(一):基础外设

参考 51单片机入门教程 1. 单片机简介 1.1 定义 单片机&#xff08;Micro Controller Unit&#xff0c;简称 MCU&#xff09; 内部集成了 CPU、RAM、ROM、定时器、中断系统、通讯接口等一系列电脑的常用硬件功能单片机的任务是信息采集&#xff08;依靠传感器&#xff09;、处…

休息日的思考与额外题——链表

文章目录 前言链表知识点 一、 92. 反转链表 II二、21. 合并两个有序链表总结 前言 一个本硕双非的小菜鸡&#xff0c;备战24年秋招&#xff0c;计划二刷完卡子哥的刷题计划&#xff0c;加油&#xff01; 二刷决定精刷了&#xff0c;于是参加了卡子哥的刷题班&#xff0c;训练…

富文本编辑器CKEditor4简单使用-01

富文本编辑器CKEditor4简单使用-01 1. 快速体验入门1.1 通过从 CDN 加载 CKEditor 来快速体验1.2 从官方网站下载软件包1.2.1 官网下载1.2.2 解压、简单使用&#xff08;自带index页面示例&#xff09;1.2.3 将 CKEditor 4 添加到自己的页面1.2.3.1 目录结构1.2.3.2 效果1.2.3.…

TensorFlow2实战-系列教程6:迁移学习实战

&#x1f9e1;&#x1f49b;&#x1f49a;TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 1、迁移学习 用已经训练好模型的权重参数当做自己任务的模型权重初始化一般全连接层需…

【机器学习】工程实践问题概述

机器学习实际应用时的工程问题与面临的挑战 一、实现细节问题 1.1 训练样本 训练样本与标注对各类机器学习算法和模型的精度影响 训练样本的选择对各类机器学习算法和模型的影响 训练样本的优化 如何进行数据增强&#xff1f; 如何进行数据清洗&#xff1f; 样本的标注对各类机…

数据结构(二)------单链表

制作不易&#xff0c;三连支持一下呗&#xff01;&#xff01;&#xff01; 文章目录 前言一.什么是链表二.链表的分类三.单链表的实现总结 前言 上一节&#xff0c;我们介绍了顺序表的实现与一些经典算法。 但是顺序表这个数据结构依然有不少缺陷&#xff1a; 1.顺序表指定…

导航页配置服务Dashy本地部署并实现公网远程访问

文章目录 简介1. 安装Dashy2. 安装cpolar3.配置公网访问地址4. 固定域名访问 简介 Dashy 是一个开源的自托管的导航页配置服务&#xff0c;具有易于使用的可视化编辑器、状态检查、小工具和主题等功能。你可以将自己常用的一些网站聚合起来放在一起&#xff0c;形成自己的导航…

基于springboot宠物领养系统

摘要 随着社会的不断发展和人们生活水平的提高&#xff0c;宠物在家庭中的地位逐渐上升&#xff0c;宠物领养成为一种流行的社会现象。为了更好地管理和促进宠物领养的过程&#xff0c;本文基于Spring Boot框架设计和实现了一套宠物领养系统。该系统以用户友好的界面为特点&…

时序分析中的去趋势化方法

时序分析中的去趋势化方法 时序分析是研究随时间变化的数据模式的一门学科。在时序数据中&#xff0c;趋势是一种随着时间推移而呈现的长期变化趋势&#xff0c;去趋势化是为了消除或减弱这种趋势&#xff0c;使数据更具平稳性。本文将简单介绍时序分析中常用的去趋势化方法&a…

跟着cherno手搓游戏引擎【13】着色器(shader)

创建着色器类&#xff1a; shader.h:初始化、绑定和解绑方法&#xff1a; #pragma once #include <string> namespace YOTO {class Shader {public:Shader(const std::string& vertexSrc, const std::string& fragmentSrc);~Shader();void Bind()const;void Un…

怎样自行搭建幻兽帕鲁游戏联机服务器?

幻兽帕鲁是一款深受玩家喜爱的多人在线游戏&#xff0c;为了获取更好的游戏体验&#xff0c;许多玩家希望能够自行搭建幻兽帕鲁游戏联机服务器&#xff0c;本文将指导大家如何自行搭建幻兽帕鲁游戏联机服务器。 自行搭建幻兽帕鲁游戏联机服务器&#xff0c;阿里云是一个不错的选…

结构体的增删查改

结构体&#xff0c;是为了解决生活中的一些不方便利用c语言自带数据类型来表示的问题。例如表示一个学生&#xff0c;那么学生这个个体假如用c语言自带数据类型怎么表示呢。可以使用名字&#xff0c;也就是字符数组&#xff1b;也可以使用学号&#xff0c;也就是int类型。但是这…

iOS 面试 Swift基础题

一、Swift 存储属性和计算属性比较&#xff1a; 存储型属性:用于存储一个常量或者变量 计算型属性: 计算性属性不直接存储值,而是用 get / set 来取值 和 赋值,可以操作其他属性的变化. 计算属性可以用于类、结构体和枚举&#xff0c;存储属性只能用于类和结构体。存储属性可…

检测头篇 | 原创自研 | YOLOv8 更换 SEResNeXtBottleneck 头 | 附详细结构图

左图:ResNet 的一个模块。右图:复杂度大致相同的 ResNeXt 模块,基数(cardinality)为32。图中的一层表示为(输入通道数,滤波器大小,输出通道数)。 1. 思路 ResNeXt是微软研究院在2017年发表的成果。它的设计灵感来自于经典的ResNet模型,但ResNeXt有个特别之处:它采用…

MySQL-窗口函数 简单易懂

窗口函数 考查知识点&#xff1a; • 如何用窗口函数解决排名问题、Top N问题、前百分之N问题、累计问题、每组内比较问题、连续问题。 什么是窗口函数 窗口函数也叫作OLAP&#xff08;Online Analytical Processing&#xff0c;联机分析处理&#xff09;函数&#xff0c;可…

Android 基础技术——列表卡顿问题如何分析解决

笔者希望做一个系列&#xff0c;整理 Android 基础技术&#xff0c;本章是关于列表卡顿问题如何分析解决 onBindViewHolder 优化 是否有耗时操作、重复创建对象、设置监听器、findViewByID、局部的动画对象等操作 是否存在内存泄漏 发生内存泄露&#xff0c;会导致一些不再使用…

游戏开发丨基于Tkinter的扫雷小游戏

文章目录 写在前面扫雷小游戏需求分析程序设计程序分析运行结果系列文章写在后面 写在前面 本期内容 基于tkinter的扫雷小游戏 所需环境 pythonpycharm或anaconda 下载地址 https://download.csdn.net/download/m0_68111267/88790713 扫雷小游戏 扫雷是一款广为人知的单…

RabbitMQ“延时队列“

1.RabbitMQ"延时队列" 延迟队列存储的对象是对应的延迟消息&#xff0c;所谓“延迟消息”是指当消息被发送以后&#xff0c;并不想让消费者立刻拿到消息&#xff0c;而是等待特定时间后&#xff0c;消费者才能拿到这个消息进行消费 注意RabbitMQ并没有延时队列慨念,…

OpenCV-29 自适应阈值二值化

一、引入 在前面的部分我们使用的是全局阈值&#xff0c;整幅图像采用同一个数作为阈值。当时这种方法并不适应于所有情况。尤其是当同一幅图像上的不同部分具有不同的亮度时。这种情况下我们需要采用自适应阈值。此时的阈值时根据图像上的每一个小区域计算与其对应的阈值。因此…