大模型关键技术:上下文学习、思维链、RLHF、参数微调、并行训练、旋转位置编码、模型加速、大模型注意力机制优化、永久记忆、LangChain、知识图谱、多模态

大模型关键技术

    • 大模型综述
    • 上下文学习
    • 思维链 CoT
    • 奖励建模
    • 参数微调
    • 并行训练
    • 模型加速
    • 永久记忆:大模型遗忘
    • LangChain
    • 知识图谱
    • 多模态
    • 大模型系统优化
    • AI 绘图
    • 幻觉问题
    • 从 GPT1 - GPT4 拆解
      • GPTs
    • 对比主流大模型技术点
      • 旋转位置编码
      • 层归一化
      • 激活函数
      • 注意力机制优化

 


大模型综述

你知道嘛,那个叫大规模语言模型,简单说就像是个超级大的脑袋,里头装的东西比咱们想的还要多,参数得有几百亿那么多。

这玩意儿就像是自学成才的,它通过看特别多的书、文章啥的,不需要别人教,自己就能学会说话和写字。

它的工作就像是个算命先生,总想算出来你下一句话可能会说什么。

比如有一堆词儿,它能算出这些词连一块儿说出来的可能性有多大。

就好像你掷个骰子,算命先生能告诉你可能掷出的点数一样。

要算这些词的联合可能性可不简单,因为要考虑的东西实在太多了。

就好比咱们手头有个《现代汉语词典》,里面有7万多个词。

你想,要是咱们随便组个20个词的句子,那可能的组合比天上的星星还多,数量大得惊人,高达 7.9792x1096 这么个天文数字。

要简化这个算法,咱们可以这么想:一个词出现的可能性,可能就跟前头几个词有关系。

就像咱们盖房子,一块砖接着一块砖,后面这块砖放的位置,得看前面几块砖放哪儿。

用一种叫前馈神经网络的方法,就能算出来每个词跟前面的词搭配的可能性。

例如,要算“把努力变成一种习惯”这句话的可能性,就是算“把”出现的可能,再算“努力”跟在“把”后面的可能,依此类推。

  • P ( 把 努力 变成 一种 习惯 ) = P ( 把 ) × P ( 努力|把 ) × P ( 变成|把 努力 ) × P ( 一种 ∣ 把 努力 变成 ) × P ( 习惯 ∣ 把 努力 变成 一种 ) \begin{aligned} P(\text{把 努力 变成 一种 习惯})=& P(\text{把})\times P(\text{努力|把})\times P(\text{变成|把 努力})\times \\ &P(\text{一种}|\text{把 努力 变成})\times P(\text{习惯}|\text{把 努力 变成 一种}) \end{aligned} P( 努力 变成 一种 习惯)=P()×P(努力|)×P(变成| 努力)×P(一种 努力 变成)×P(习惯 努力 变成 一种)

恩,这就是大语言模型,就像是个自学成材的超级计算机,它能通过看大量的书和文章,自己学会怎么用词造句。

这模型的本事就是算出来你下句话可能说啥,就像个现代算命先生。

但因为要考虑的可能性太多,就像是从词典里随便拼凑出天文数字那么多的句子一样,所以得用一些巧妙的方法来简化计算。

这就像盖房子,一块砖一个脚印,后面的得看前面的摆放。

用这个方法,这大脑袋计算机就能算出一个词跟它前面的词搭配的可能性,帮我们更好地理解和用语言。
 


上下文学习

和以前不同的地方在于,他不仅仅是学习单纯的词和句子,还学会了词和词之间的关系。

你想啊,一个词在不同的句子里,意思可能完全不一样,就像“苹果”在“打开苹果电脑”和“我想吃苹果”里的意思就不一样。

这大模型得学会这些变化,才能真正明白咱们说的话。

之所以有今天,都是因为他们发现了一本秘籍。

前置:《【史上最本质】序列模型:RNN、双向 RNN、LSTM、GRU、Seq-to-Seq、束搜索、Transformer、Bert》

秘籍:《从【注意力机制】开始,到【Transformer】的零基础【大模型】系列》。

 


思维链 CoT

思维链 CoT

 


奖励建模

【挑战全网最易懂】深度强化学习 — 零基础指南

大模型 RLHF 实战!【OpenAI独家绝技RLHF!RLHF的替代算法DPO!Claude 暗黑科技 RAIHF!】

 


参数微调

大模型微调方法:冻结方法 Freeze、P-Tuning 系列、LoRA、QLoRA

 


并行训练

大模型并行训练、超大模型分布式训练

 


模型加速

【所有方法一览】大模型推理优化:在更小的设备运行、推理增速

 


永久记忆:大模型遗忘

大部分方法都是临时修补,帮助那些大型计算机(LLM)临时记住些东西。

但MemGPT,能让大模型能永远记住东西!

  • https://github.com/cpacker/MemGPT#loading-local-files-into-archival-memory

他们搞了个叫虚拟上下文管理的玩意儿,灵感是从电脑操作系统里那一层层的记忆体系里来的。

就好像是给计算机装了个超级大的储物间,让它能记住更多的东西。

这个MemGPT就像是一个聪明的仓库管理员,懂得怎么在快速记忆(内存)和慢速记忆(硬盘)之间转移东西。

就好像有些东西经常用,就放在手边,不常用的就放远点。

这样,计算机就能在有限的记忆空间里,更聪明地处理大量的信息。

而且,它还会自己决定啥时候跟用户聊天,啥时候专心处理信息。
 


LangChain

【解决复杂链式任务,打造全能助手】LangChain 大模型 打造 钢铁侠的全能助理 Jarvis

 


知识图谱

统一大语言模型和知识图谱:如何解决医学大模型-问诊不充分、检查不准确、诊断不完整、治疗方案不全面?

 


多模态

ViT:视觉 Transformer

Swin Transformer:将卷积网络和 Transformer 结合

CLIP 对比预训练 + 文字图像相似度:离奇调查,如何训练视觉大模型?

 


大模型系统优化

【附带大模型训练数据】大模型系统优化:怎么计算模型所需的算力、内存带宽、内存容量和通信数据量?

 


AI 绘图

【史上最小白】变分自编码器 VAE:从降维本质,到自编码器,再到变分自编码器

Diffusion 扩散模型:论生成领先多样性,GAN太单一;论尊贵清晰度独占鳌头,VAE常失真

DALL-E 系列:AI绘画背后的惊人真相!!【1个离奇内幕、3个意想不到、5大秘密揭示】
 


幻觉问题

如何解决大模型的「幻觉」问题?

 


从 GPT1 - GPT4 拆解

从 GPT1 - GPT4 拆解

 


GPTs

 


对比主流大模型技术点

当前绝大多数大语言模型结构都采用了类似GPT架构,使用基于Transformer架构构造的仅由解码器组成的网络结构,采用自回归的方式构建语言模型。

但是在位置编码、层归一化位置以及激活函数等细节上各有不同。

旋转位置编码

如何提高大模型的外推能力

层归一化

激活函数

注意力机制优化

 


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/637731.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四种方法将 Docker Registry 迁移至 Harbor

Registry Docker Distribution Docker Distribution 是第一个是实现了打包、发布、存储和镜像分发的工具,起到 docker registry 的作用。(目前 Distribution 已经捐赠给了 CNCF)。其中 Docker Distribution 中的 spec 规范后来也就成为了 O…

在线WebOffce在HTML/VUE/Electron纯前端网页编辑Office之打开Word后自动处于修订模式

在线办公协同办公过程中,对于老板给出的文档修改,如果在错别字方面都要自己一个个字去看的话也太浪费时间了,其实word上就有一个修订模式,可以帮助大家高效完成文档的修改,在线WebOffce在HTML/VUE/Electron纯前端网页编…

Semaphone应用源码分析

Semaphone应用&源码分析 3.1 Semaphore介绍 sync,ReentrantLock是互斥锁,保证一个资源同一时间只允许被一个线程访问 Semaphore(信号量)保证1个或多个资源可以被指定数量的线程同时访问 底层实现是基于AQS去做的。 Semap…

pinia 的使用方法

使用方式(选项式) 1、在 mian.js 导入 pinia 里的 createPinia 函数。 2、app.use 这个 createPinia 函数的返回值。 // main.jsimport { createPinia } from pinia;app.use(createPinia()); 3、创建一个 js 文件(该文件保存着共享的数据&…

Git和SVN

1、Git Git是一个分布式版本控制系统,由Linus Torvalds创建,用于有效、高速地处理从小到大的项目版本管理。Git是开源的,采取了分布式的版本库的方式,不需要服务器端软件就可以运行。 Git的核心概念 以下是Git中的一些核心概念…

《Python数据分析技术栈》第03章 02 数据结构(Structure of data)

02 数据结构(Structure of data) 《Python数据分析技术栈》第03章 02 数据结构(Structure of data) The data that we need to analyze could have any of the following structures, 我们需要分析的数据可能具有以下任何一种结…

RabbitMQ-数据持久化

一、持久化类型 1、交换机持久化(SpringAMQP默认) 2、队列持久化(SpringAMQP默认) 3、消息持久化 二、消息持久化 1、纯内存操作 如果采用纯内存操作,那么消息存储达到队列的上限之后,会有一个page ou…

开源进程/任务管理服务Meproc使用之HTTP API

本文讲述如何使用开源进程/任务管理服务Meproc的HTTP API管理整个服务。 Meproc所提供的全部 API 的 URL 都是相同的。 http://ip:port/proc例如 http://127.0.0.1:8606/proc在下面的小节中,我们使用curl命令向您展示 API 的方法、参数和请求正文。 启动任务 …

git 常规操作及设置

git 常规操作及设置 Git是一个分布式版本控制系统,可以用来跟踪文件的修改历史并与其他人进行协作开发。下面是一些常见的Git操作及设置: 初始化仓库:使用命令git init在当前目录创建一个新的Git仓库。 克隆仓库:使用命令git clo…

TCP/IP协议及配置、IP地址、子网掩码、网关地址、DNS与DHCP介绍

一、什么是服务器 能够为其他计算机提供服务的更高级的电脑 尺寸:Unit 1u1.75英寸44.45mm4.445cm IDC(机房) C/S结构 Client/Server客户端和服务端 二、TCP/IP协议 计算机与计算机之间通信的协议 三要素: IP地址 子网掩码 IP路由 I…

基于一次应用卡死问题所做的前端性能评估与优化尝试

问题背景 在上个月,由于客户反馈客户端卡死现象但我们远程却难以复现此现象,于是我们组织了一次现场上门故障排查,并希望基于此次观察与优化,为客户端开发提供一些整体的优化升级。当然,在尝试过程中,也发…

大模型实战营Day6 作业

基础作业 使用 OpenCompass 评测 InternLM2-Chat-7B 模型在 C-Eval 数据集上的性能 环境配置 conda create --name opencompass --clone/root/share/conda_envs/internlm-base source activate opencompass git clone https://github.com/open-compass/opencompass cd openco…

eMMC之分区管理、总线协议和工作模式

一、eMMC 简介 eMMC 是 embedded MultiMediaCard 的简称。MultiMediaCard,即MMC, 是一种闪存卡(Flash Memory Card)标准,它定义了 MMC 的架构以及访问 Flash Memory 的接口和协议。而eMMC 则是对 MMC 的一个拓展&…

android 13.0 Camera2 去掉后置摄像头 仅支持前置摄像头功能

1.概述 在定制化13.0系统rom定制化开发中,当产品只有一个前置摄像头单摄像头,这时调用相机时就需要默认打开前置摄像头就需要来看调用摄像头这块的代码,屏蔽掉后置摄像头的调用api就可以了,接下来就来具体实现相关功能的开发 2.Camera2 去掉后置摄像头 仅支持前置摄像头功…

【Docker】使用Docker安装Nginx及部署前后端分离项目应用

一、Nginx介绍 Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务。它是由伊戈尔赛索耶夫为俄罗斯访问量第二的Rambler.ru站点开发的,公开版本1.19.6发布于2020年12月15日。其将源代码以类BSD许可证的形式发布,因它…

数据结构---栈(Stack)

一、基本概念 栈是一种线性数据结构 二、特点 栈是"后进先出(LIFO---Last In First Out)"的数据结构(盘子的叠放:当服务员将新的盘子放在餐桌上时,他们通常会将盘子放在已有的盘子堆的顶部。当顾客用完盘子后,服务员会从堆顶取走…

PostgreSQL 100条命令

我会为您提供一些 PostgreSQL 中最常用的命令: 1. 创建数据库:CREATE DATABASE database_name; 2. 连接到数据库:\c database_name; 3. 创建表格:CREATE TABLE table_name (column1 datatype, column2 datatype, ...); 4. 插入数…

内网环境横向移动——利用windows服务

利用windows服务进行横向渗透主要是通过sc命令,但是注意这里跟之前windows远程命令相比多了一个条件,即当前主机需要为administrator权限。 sc命令 sc命令是XP系统中功能强大的DOS命令,SC命令能与“服务控制器”和已安装设备进行通讯。SC是用于与服务控…

SDCMS靶场通过

考察核心:MIME类型检测文件内容敏感语句检测 这个挺搞的,一开始一直以为检查文件后缀名的,每次上传都失败,上传的多了才发现某些后缀名改成php也可通过,png图片文件只把后缀名改成php也可以通过,之前不成功…

uniapp组件库Popup 弹出层 的使用方法

目录 #平台差异说明 #基本使用 #设置弹出层的方向 #设置弹出层的圆角 #控制弹窗的宽度 | 高度 #内容局部滚动 #API #Props #Event 弹出层容器,用于展示弹窗、信息提示等内容,支持上、下、左、右和中部弹出。组件只提供容器,内部内容…