Semaphone应用&源码分析
3.1 Semaphore介绍
sync,ReentrantLock是互斥锁,保证一个资源同一时间只允许被一个线程访问
Semaphore(信号量)保证1个或多个资源可以被指定数量的线程同时访问
底层实现是基于AQS去做的。
Semaphore底层也是基于AQS的state属性做一个计数器的维护。state的值就代表当前共享资源的个数。如果一个线程需要获取的1或多个资源,直接查看state的标识的资源个数是否足够,如果足够的,直接对state - 1拿到当前资源。如果资源不够,当前线程就需要挂起等待。知道持有资源的线程释放资源后,会归还给Semaphore中的state属性,挂起的线程就可以被唤醒。
Semaphore也分为公平和非公平的概念。
使用场景:连接池对象就可以基础信号量去实现管理。在一些流量控制上,也可以采用信号量去实现。再比如去迪士尼或者是环球影城,每天接受的人流量是固定的,指定一个具体的人流量,可能接受10000人,每有一个人购票后,就对信号量进行–操作,如果信号量已经达到了0,或者是资源不足,此时就不能买票。
3.2 Semaphore应用
以上面环球影城每日人流量为例子去测试一下。
public static void main(String[] args) throws InterruptedException {// 今天环球影城还有人个人流量Semaphore semaphore = new Semaphore(10);new Thread(() -> {System.out.println("一家三口要去~~");try {semaphore.acquire(3);System.out.println("一家三口进去了~~~");Thread.sleep(10000);} catch (InterruptedException e) {e.printStackTrace();}finally {System.out.println("一家三口走了~~~");semaphore.release(3);}}).start();for (int i = 0; i < 7; i++) {int j = i;new Thread(() -> {System.out.println(j + "大哥来了。");try {semaphore.acquire();System.out.println(j + "大哥进去了~~~");Thread.sleep(10000);} catch (InterruptedException e) {e.printStackTrace();}finally {System.out.println(j + "大哥走了~~~");semaphore.release();}}).start();}Thread.sleep(10);System.out.println("main大哥来了。");if (semaphore.tryAcquire()) {System.out.println("main大哥进来了。");}else{System.out.println("资源不够,main大哥进来了。");}Thread.sleep(10000);System.out.println("main大哥又来了。");if (semaphore.tryAcquire()) {System.out.println("main大哥进来了。");semaphore.release();}else{System.out.println("资源不够,main大哥进来了。");}
}
其实Semaphore整体就是对构建Semaphore时,指定的资源数的获取和释放操作
获取资源方式:
- acquire():获取一个资源,没有资源就挂起等待,如果中断,直接抛异常
- acquire(int):获取指定个数资源,资源不够,或者没有资源就挂起等待,如果中断,直接抛异常
- tryAcquire():获取一个资源,没有资源返回false,有资源返回true
- tryAcquire(int):获取指定个数资源,没有资源返回false,有资源返回true
- tryAcquire(time,unit):获取一个资源,如果没有资源,等待time.unit,如果还没有,就返回false
- tryAcquire(int,time,unit):获取指定个数资源,如果没有资源,等待time.unit,如果还没有,就返回false
- acquireUninterruptibly():获取一个资源,没有资源就挂起等待,中断线程不结束,继续等
- acquireUninterruptibly(int):获取指定个数资源,没有资源就挂起等待,中断线程不结束,继续等
归还资源方式:
- release():归还一个资源
- release(int):归还指定个数资源
3.3 Semaphore源码分析
先查看Semaphore的整体结构,然后基于获取资源,以及归还资源的方式去查看源码
3.3.1 Semaphore的整体结构
Semaphore内部有3个静态内类。
首先是向上抽取的Sync
其次还有两个Sync的子类NonFairSync以及FairSync两个静态内部类
Sync内部主要提供了一些公共的方法,并且将有参构造传入的资源个数,直接基于AQS提供的setState方法设置了state属性。
NonFairSync以及FairSync区别就是tryAcquireShared方法的实现是不一样。
3.3.2 Semaphore的非公平的获取资源
在构建Semaphore的时候,如果只设置资源个数,默认情况下是非公平。
如果在构建Semaphore,传入了资源个数以及一个boolean时,可以选择非公平还是公平。
public Semaphore(int permits, boolean fair) {sync = fair ? new FairSync(permits) : new NonfairSync(permits);}
从非公平的acquire方法入手
首先确认默认获取资源数是1个,并且acquire是允许中断线程时,抛出异常的。获取资源的方式,就是直接用state - 需要的资源数,只要资源足够,就CAS的将state做修改。如果没有拿到锁资源,就基于共享锁的方式去将当前线程挂起在AQS双向链表中。如果基于doAcquireSharedInterruptibly拿锁成功,会做一个事情。会执行setHeadAndPropagate方法。一会说
// 信号量的获取资源方法(默认获取一个资源)
public void acquire() throws InterruptedException {// 跳转到了AQS中提供共享锁的方法sync.acquireSharedInterruptibly(1);
}// AQS提供的
public final void acquireSharedInterruptibly(int arg) throws InterruptedException {// 判断线程的中断标记位,如果已经中断,直接抛出异常if (Thread.interrupted())throw new InterruptedException();// 先看非公平的tryAcquireShared实现。// tryAcquireShared:// 返回小于0,代表获取资源失败,需要排队。// 返回大于等于0,代表获取资源成功,直接执行业务代码if (tryAcquireShared(arg) < 0)doAcquireSharedInterruptibly(arg);
}// 信号量的非公平获取资源方法
final int nonfairTryAcquireShared(int acquires) {// 死循环。for (;;) {// 获取state的数值,剩余的资源个数int available = getState();// 剩余的资源个数 - 需要的资源个数int remaining = available - acquires;// 如果-完后,资源个数小于0,直接返回这个负数if (remaining < 0 ||// 说明资源足够,基于CAS的方式,将state从原值,改为remainingcompareAndSetState(available, remaining))return remaining;}
}
// 获取资源失败,资源不够,当前线程需要挂起等待
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {// 构建Node节点,线程和共享锁标记,并且到AQS双向链表中final Node node = addWaiter(Node.SHARED);boolean failed = true;try {for (;;) {// 拿到上一个节点final Node p = node.predecessor();// 如果是head.next,就抢一手if (p == head) {// 再次基于非公平的方式去获取一次资源int r = tryAcquireShared(arg);// 到这,说明拿到了锁资源if (r >= 0) {setHeadAndPropagate(node, r);p.next = null; failed = false;return;}}// 如果上面没拿到,或者不是head的next节点,将前继节点的状态改为-1,并挂起当前线程if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())// 如果线程中断会抛出异常throw new InterruptedException();}} finally {if (failed)cancelAcquire(node);}
}
acquire()以及acquire(int)的方式,都是执行acquireSharedInterruptibly方法去尝试获取资源,区别只在于是否传入了需要获取的资源个数。
tryAcquire()以及tryAcquire(int因为这两种方法是直接执行tryAcquire,只使用非公平的实现,只有非公平的情况下,才有可能在有线程排队的时候获取到资源
但是tryAcquire(int,time,unit)这种方法是正常走的AQS提供的acquire。因为这个tryAcquire可以排队一会,即便是公平锁也有可能拿到资源。这里的挂起和acquire挂起的区别仅仅是挂起的时间问题。
- acquire是一直挂起直到线程中断,或者线程被唤醒。
- tryAcquire(int,time,unit)是挂起一段时间,直到线程中断,要么线程被唤醒,要么阻塞时间到了
还有acquireUninterruptibly()以及acquireUninterruptibly(int)只是在挂起线程后,不会因为线程的中断而去抛出异常
3.3.3 Semaphore公平实现
公平与非公平只是差了一个方法的实现tryAcquireShared实现
这个方法的实现中,如果是公平实现,需要先查看AQS中排队的情况
// 信号量公平实现
protected int tryAcquireShared(int acquires) {// 死循环。for (;;) {// 公平实现在走下述逻辑前,先判断队列中排队的情况// 如果没有排队的节点,直接不走if逻辑// 如果有排队的节点,发现当前节点处在head.next位置,直接不走if逻辑if (hasQueuedPredecessors())return -1;// 下面这套逻辑和公平实现是一模一样的。int available = getState();int remaining = available - acquires;if (remaining < 0 ||compareAndSetState(available, remaining))return remaining;}
}
3.3.4 Semaphore释放资源
因为信号量从头到尾都是共享锁的实现……
释放资源操作,不区分公平和非公平
// 信号量释放资源的方法入口
public void release() {sync.releaseShared(1);
}// 释放资源不分公平和非公平,都走AQS的releaseShared
public final boolean releaseShared(int arg) {// 优先查看tryReleaseShared,这个方法是信号量自行实现的。if (tryReleaseShared(arg)) {// 只要释放资源成功,执行doReleaseShared,唤醒AQS中排队的线程,去竞争Semaphore的资源doReleaseShared();return true;}return false;
}// 信号量实现的释放资源方法
protected final boolean tryReleaseShared(int releases) {// 死循环for (;;) {// 拿到当前的stateint current = getState();// 将state + 归还的资源个数,新的state要被设置为nextint next = current + releases;// 如果归还后的资源个数,小于之前的资源数。// 避免出现归还资源后,导致next为负数,需要做健壮性判断if (next < current) throw new Error("Maximum permit count exceeded");// CAS操作,保证原子性,只会有一个线程成功的就之前的state修改为nextif (compareAndSetState(current, next))return true;}
}
3.4 AQS中PROPAGATE节点
为了更好的了解PROPAGATE节点状态的意义,优先从JDK1.5去分析一下释放资源以及排队后获取资源的后置操作
3.4.1 掌握JDK1.5-Semaphore执行流程图
首先查看4个线程获取信号量资源的情况
往下查看释放资源的过程会触发什么问题
首先t1释放资源,做了进一步处理
当线程3获取锁资源后,线程2再次释放资源,因为执行点问题,导致线程4无法被唤醒
3.4.2 分析JDK1.8的变化
====================================JDK1.5实现============================================.
public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {Node h = head;if (h != null && h.waitStatus != 0) unparkSuccessor(h);return true;}return false;
}private void setHeadAndPropagate(Node node, int propagate) {setHead(node);if (propagate > 0 && node.waitStatus != 0) {Node s = node.next; if (s == null || s.isShared())unparkSuccessor(node);}
}====================================JDK1.8实现============================================.
public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {doReleaseShared();return true;}return false;
}
private void doReleaseShared() {for (;;) {// 拿到head节点Node h = head;// 判断AQS中有排队的Node节点if (h != null && h != tail) {// 拿到head节点的状态int ws = h.waitStatus;// 状态为-1if (ws == Node.SIGNAL) {// 将head节点的状态从-1,改为0if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue; // 唤醒后继节点unparkSuccessor(h);}// 发现head状态为0,将head状态从0改为-3,目的是为了往后面传播else if (ws == 0 &&!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue; // loop on failed CAS}// 没有并发的时候。head节点没变化,正常完成释放排队的线程if (h == head) break;}
}private void setHeadAndPropagate(Node node, int propagate) {// 拿到headNode h = head; // 将线程3的Node设置为新的headsetHead(node);// 如果propagate 大于0,代表还有剩余资源,直接唤醒后续节点,如果不满足,也需要继续往后判断看下是否需要传播// h == null:看成健壮性判断即可// 之前的head节点状态为负数,说明并发情况下,可能还有资源,需要继续向后唤醒Node// 如果当前新head节点的状态为负数,继续释放后续节点if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {// 唤醒当前节点的后继节点Node s = node.next;if (s == null || s.isShared())doReleaseShared();}
}