Yolov8_使用自定义数据集训练模型1

前面几篇文章介绍了如何搭建Yolov8环境、使用默认的模型训练和推理图片及视频的效果、并使用GPU版本的torch加速推理、导出.engine格式的模型进一步利用GPU加速,本篇介绍如何自定义数据集,这样就可以训练出识别特定物体的模型。

《Yolov8_使用自定义数据集训练模型1》——主要是怎么创建自定义数据集,测试demo;

《Yolov8_使用自定义数据集训练模型2》——搜集更多的图片去标注、训练,重点关注训练后的实际效果;

1、创建自定义数据集

1.1、创建自定义数据集——总体流程

  • 收集图片:收集一批带有目标物体的图片【images文件夹下.png图片】
  • 标注目标物体:使用标注工具对图片中的目标物体进行标注【xml_labels文件夹下.xml文件】
  • 划分数据集:将整个数据集按一定比例分为训练集、验证集、测试集【使用split_dataset.py脚本生成split_dataset_txt文件夹中的.txt文件,.txt文件内容是不含后缀.xml的文件名】
  • 生成Yolo标注文件及各数据集使用的图片路径:使用xml_to_txt.py脚本将xml标注文件转成Yolo需要的.txt标注文件【labels文件夹下.txt标注文件】,同时脚本生成训练集、验证集、测试集所使用图片的绝对路径【当前目录下test.txt、train.txt、val.txt】

最终的效果就是下面这个文件夹:

farmland.yaml是进行yolo训练时配置文件,不属于创建数据集,后面再说明;

图片是截图来的命名比较乱,batch_rename.py用于批量重命名,下面会附代码;

1.2、收集图片

收集一批带有目标物体的图片,图片的多少和质量关乎训练出模型的效果,这里只找了几张图片是为了跑一下自定义数据集的流程。

图片是截图来的,自动保存的文件名与内容无关,相信你也不想一个一个rename,下面是对图片批量重命名的batch_rename.py代码:

import osclass BatchRename():def __init__(self):self.path = './images'  def rename(self):filelist = os.listdir(self.path)    total_num = len(filelist)          i = 1 for item in filelist:if 1:  src = os.path.join(os.path.abspath(self.path), item)  dst = os.path.join(os.path.abspath(self.path), 'farmland' + format(str(i), '0>4s') + '.png')    try:os.rename(src, dst)   print('converting %s to %s ...' % (src, dst))i = i + 1except:continueprint ('total rename %d files.' % (total_num))if __name__ == '__main__':demo = BatchRename()demo.rename()

1.3、标注目标物体

1.3.1、标注工具_没有使用labelimg

大部分人使用的标注工具是labelimg,但是安装labelimg需要安装pyqt5等依赖,pyqt5等不支持python3.10,不至于为了这个标注工具去修改现在Linux的Python环境。虽然labelimg也支持Windows,但是看教程又需要Anaconda环境,没必要这么麻烦,所以不想使用labelimg。

1.3.2、标注工具_使用Colabeler

发现Colabeler的界面还算好看,支持计算机视觉、NLP、语音三大领域的标注,功能强大且免费,所以试试看。

Colabeler官网:Colabeler - Best annotation tool for AI dataset labeling

Windows安装Colabeler,标注后的.xml文件传给Linux

标注的目的是得到.xml文件,所以完全可以在Windows安装该软件并标注,然后使用SSH传给Linux,使用该方式是因为图片本身也要传给Linux,这样等于是把搜集图片和标注这两步合一起在自己的Windows上先做好。

Windows安装Colabeler没必要说了,直接下一步下一步就能安装成功,然后打开界面左上角创建项目,然后选择Localization、填入项目名称、图片路径、分类名称(多个分类用逗号隔开,这里只写了一个farmland,就是想根据图片判断是否是农田)。

使用“Rectangle”工具标注出目标物体,右侧LabelList选择目标所属类别,一张图片所有的目标物体标注完成后单击下方对号确认,使用“Next”进入下一张图片标注,所有图片标注完成单击“Export”导出XML文件。

1.4、划分数据集

目的是将整个数据集按一定比例分为训练集、验证集、测试集。

使用split_dataset.py脚本随机划分数据集,生成split_dataset_txt文件夹中的.txt文件,.txt文件内容是不含后缀.xml的文件名,下面是split_dataset.py以及各文件内容:

import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = './xml_labels'
txtsavepath = './split_dataset_txt'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('./split_dataset_txt/trainval.txt', 'w')
ftest = open('./split_dataset_txt/test.txt', 'w')
ftrain = open('./split_dataset_txt/train.txt', 'w')
fval = open('./split_dataset_txt/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

1.5、生成Yolo标注文件及各数据集使用的图片路径

使用xml_to_txt.py脚本将xml标注文件转成Yolo需要的.txt标注文件【labels文件夹下.txt标注文件】,同时脚本生成训练集、验证集、测试集所使用图片的绝对路径【当前目录下test.txt、train.txt、val.txt】,下面是xml_to_txt.py以及各文件内容:

如果使用的标注工具不同,解析xml过程可能会报错,此时任意可以打开一个.xml文件根据实际结构修改。

 
import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['farmland']
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('./xml_labels/%s.xml' % (image_id), encoding='UTF-8')out_file = open('./labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)objects = root.find('outputs').find('object')for obj in objects.iter('item'):      cls = obj.find('name').textif cls not in classes :continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = bif b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('./labels/'):os.makedirs('./labels/')image_ids = open('./split_dataset_txt/%s.txt' % (image_set)).read().strip().split()list_file = open('./%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/images/%s.png\n' % (image_id))convert_annotation(image_id)list_file.close()

2、使用数据集进行yolo训练

2.1、编写.yaml配置文件

给出训练集、验证集、测试集的路径,训练的目标总数,具体的序号和目标名称列表。

train: /home/lgzn/datasets/farmland_dataset/train.txt
val: /home/lgzn/datasets/farmland_dataset/val.txt
test: /home/lgzn/datasets/farmland_dataset/test.txtnc: 1
names:0: farmland

2.2、使用自定义数据集训练

修改.yaml配置文件的路径,测试能否使用刚才制作的这个数据集进行训练。

yolo train data='/home/lgzn/datasets/farmland_dataset/farmland.yaml' model=yolov8n.pt epochs=2 lr0=0.01

如果和之前文章中使用coco128数据集的训练输出日志流程差不多,没有报错,这一步就完成了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/633013.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

innoDB存储引擎

1.逻辑存储结构 行数据->行->页->区->段->表空间 表空间(ibd文件),一个mysql实例可以对应多个表空间,来存储记录,索引等数据。 段:分为数据段和索引段,回滚段,数据段就是B树的叶子节点&am…

HR3D+HRAuido+HRUI+HR3D_Plugins(游戏引擎源码)

国内知名游戏公司开发的游戏引擎,简洁高效,代码值得参考。包含了这几部分:HR3DHRAuidoHRUIHR3D_Plugins HR3DHRAuidoHRUIHR3D_Plugins(游戏引擎源码) 下载地址: 链接:https://pan.baidu.com/s/1…

使用xbindkeys设置鼠标侧键

1.安装如下包 sudo apt install xbindkeys xautomation 2.生成配置文件 xbindkeys --defaults > $HOME/.xbindkeysrc 3.确定侧键键号 在终端执行下面的代码: xev | grep button 此时会出现如下窗口,将鼠标指针移动到这个窗口上: 单…

【机器学习】调配师:咖啡的完美预测

有一天,小明带着一脸期待找到了你这位数据分析大师。他掏出手机,屏幕上展示着一份详尽的Excel表格。“看,这是我咖啡店过去一年的数据。”他滑动着屏幕,“每个月的销售量、广告投入,还有当月的气温,我都记录…

【MYSQL】事务隔离级别

脏读、幻读、不可重复读 脏读 一个事务正在对一条记录做修改,在这个事务完成并提交前,另一个事务也来读取同一条记录,读取了这些未提交的“脏”数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形…

【控制篇 / 分流】(7.4) ❀ 01. 对指定IP网段访问进行分流 ❀ FortiGate 防火墙

【简介】公司有两条宽带,一条ADSL拨号用来上网,一条移动SDWAN,已经连通总部内网服务器,领导要求,只有访问公司服务器IP时走移动SDWAN,其它访问都走ADSL拨号,如果你是管理员,你知道有…

自定义 React Hooks:编写高效、整洁和可重用代码的秘密武器

欢迎来到神奇的 React 世界 大家好!在 React 的世界中,有一个强大的秘密武器,它往往隐藏在显而易见的地方,由于缺乏理解或熟悉而没有得到充分利用。 这个强大的工具,被称为自定义 React hooks,可以彻底改变我们编写 React 应用程序代码的方式。通过提取组件中的有状态逻辑,自…

查找局域网树莓派raspberry的mac地址和ip

依赖python库: pip install socket pip install scapy运行代码: import socket from scapy.layers.l2 import ARP, Ether, srpdef get_hostname(ip_address):try:return socket.gethostbyaddr(ip_address)[0]except socket.herror:# 未能解析主机名ret…

Electron Apple SignIn 登录

本人写博客,向来主张:代码要完整,代码可运行,文中不留下任何疑惑。 最讨厌写博客,代码只留下片段,文中关键的东西没写清楚。之前看了那么多文章,就是不告诉我clientId从哪来的。 官方资料地址&…

WordPress后台底部版权信息“感谢使用 WordPress 进行创作”和版本号怎么修改或删除?

不知道各位WordPress站长在后台操作时,是否有注意到每一个页面底部左侧都有一个“感谢使用 WordPress 进行创作。”,其中WordPress还是带有nofollow标签的链接;而页面底部右侧都有一个WordPress版本号,如下图中的“6.4.2 版本”。…

chisel入门初步1——基4的booth编码的单周期有符号乘法器实现

基4的booth编码乘法器原理说明 基2的booth编码 本质来说就是一个裂项重组,乘法器最重要的设计是改变部分积的数量,另外在考虑有符号数的情况下,最高位符号位有特别的意义。 (注:部分积是指需要最后一起加和的所有部分…

使用的uview 微信高版本 头像昵称填写能力

<template><view><button class"cu-btn block bg-blue margin-tb-sm lg" tap"wxGetUserInfo">一键登录</button><view><!-- 提示窗示例 --><u-popup :show"show" background-color"#fff">&…

关于C#中的async/await的理解

1. 使用async标记的方法被认为是一个异步方法&#xff0c;如果不使用await关键字&#xff0c;调用跟普通方法没有区别 static async Task Main(string[] args){Console.WriteLine("主线程id&#xff1a;" Thread.CurrentThread.ManagedThreadId);TestAwait();Consol…

翻译: Streamlit从入门到精通六 实战缓存Cache请求数据

Streamlit从入门到精通 系列&#xff1a; 翻译: Streamlit从入门到精通 基础控件 一翻译: Streamlit从入门到精通 显示图表Graphs 地图Map 主题Themes 二翻译: Streamlit从入门到精通 构建一个机器学习应用程序 三翻译: Streamlit从入门到精通 部署一个机器学习应用程序 四翻译…

从matlab的fig图像文件中提取数据

这里用的是openfig&#xff08;&#xff09;函数打开的fig文件 →→→【matlab 中 fig 数据提取】 很简洁 →→→【MATLAB提取 .fig 文件中的数据】 这个给出了包含多个曲线的情况 →→→【提取matlab fig文件里的数据和legend】 chatgpt给出的方法 打开fig文件并保存数据 我的…

StarRocks 生成列:百倍提速半结构化数据分析

半结构化分析主要是指对 MAP&#xff0c;STRUCT&#xff0c;JSON&#xff0c;ARRAY 等复杂数据类型的查询分析。这些数据类型表达能力强&#xff0c;因此被广泛应用到 OLAP 分析的各种场景中&#xff0c;但由于其实现的复杂性&#xff0c;对这些复杂类型分析将会比一般简单类型…

【单片机】改写DS2431芯片的地址码,地址ROM,DS2431芯片解密

对DS2431里面的128字节可以进行任意读写&#xff0c;方式可以看这里&#xff1a;https://blog.csdn.net/x1131230123/article/details/132248958 但DS2431芯片的地址码是光刻不可修改的&#xff0c;所以只有使用模拟芯片。 原理&#xff1a; https://www.dianyuan.com/article…

K8S Informer机制原理解读 | 架构设计

在Kubernetes系统中&#xff0c;组件之间通过HTTP协议进行通信&#xff0c;在不依赖任何中间件的情况下需要保证消息的实时性、可靠性、顺序性等。那么Kubernetes是如何做到的呢&#xff1f;答案就是Informer机制。Kubernetes的其他组件都是通过client-go的Informer机制与Kuber…

Java线程池配置由繁至简,找到适合自己的天命线程池

Java线程池配置由繁至简&#xff0c;找到适合自己的天命线程池 任务队列workQueue和饱和策略handler什么时候登场&#xff1f; 首先这里有几道经常考的线程池面试题&#xff1a; 简单介绍下线程池&#xff0c;核心数从corePoolSize 到maximumPoolSize 的变化过程&#xff1f;…

我用 ChatGPT 做了一次探索性数据分析,真的太太太实用了!

ChatGPT 经过短短1年时间的发展&#xff0c;其功能越来越强&#xff0c;现在已经是大多数企业和个人不可或缺的助手。特别是最新的 GPT-4 版本&#xff0c;专门在左边菜单栏给出了两个工具&#xff08;一个是数据分析&#xff0c;另一个是根据文字描述生成图片&#xff09;&…