数据结构与算法之美学习笔记:44 | 最短路径:地图软件是如何计算出最优出行路径的?

目录

  • 前言
  • 算法解析
  • 总结引申

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
我们学习了图的两种搜索算法,深度优先搜索和广度优先搜索。这两种算法主要是针对无权图的搜索算法。针对有权图,也就是图中的每条边都有一个权重,我们该如何计算两点之间的最短路径(经过的边的权重和最小)呢?今天,我就从地图软件的路线规划问题讲起,带你看看常用的最短路径算法(Shortest Path Algorithm)。

像 Google 地图、百度地图、高德地图这样的地图软件,我想你应该经常使用吧?如果想从家开车到公司,你只需要输入起始、结束地址,地图就会给你规划一条最优出行路线。这里的最优,有很多种定义,比如最短路线、最少用时路线、最少红绿灯路线等等。作为一名软件开发工程师,你是否思考过,地图软件的最优路线是如何计算出来的吗?底层依赖了什么算法呢?

算法解析

我们刚提到的最优问题包含三个:最短路线、最少用时和最少红绿灯。我们先解决最简单的,最短路线。
实际开发过程中,最重要的一点就是建模,也就是将复杂的场景抽象成具体的数据结构。针对这个问题,我们该如何抽象成数据结构呢?

显然,把地图抽象成图最合适不过了。我们把每个岔路口看作一个顶点,岔路口与岔路口之间的路看作一条边,路的长度就是边的权重。如果路是单行道,我们就在两个顶点之间画一条有向边;如果路是双行道,我们就在两个顶点之间画两条方向不同的边。这样,整个地图就被抽象成一个有向有权图。

代码如下:

public class Graph { // 有向有权图的邻接表表示private LinkedList<Edge> adj[]; // 邻接表private int v; // 顶点个数public Graph(int v) {this.v = v;this.adj = new LinkedList[v];for (int i = 0; i < v; ++i) {this.adj[i] = new LinkedList<>();}}public void addEdge(int s, int t, int w) { // 添加一条边this.adj[s].add(new Edge(s, t, w));}private class Edge {public int sid; // 边的起始顶点编号public int tid; // 边的终止顶点编号public int w; // 权重public Edge(int sid, int tid, int w) {this.sid = sid;this.tid = tid;this.w = w;}}// 下面这个类是为了dijkstra实现用的private class Vertex {public int id; // 顶点编号IDpublic int dist; // 从起始顶点到这个顶点的距离public Vertex(int id, int dist) {this.id = id;this.dist = dist;}}
}

想要解决这个问题,有一个非常经典的算法,最短路径算法,更加准确地说,是单源最短路径算法(一个顶点到一个顶点)。提到最短路径算法,最出名的莫过于 Dijkstra 算法了。所以,我们现在来看,Dijkstra 算法是怎么工作的。
具体代码如下:

// 因为Java提供的优先级队列,没有暴露更新数据的接口,所以我们需要重新实现一个
private class PriorityQueue { // 根据vertex.dist构建小顶堆private Vertex[] nodes;private int count;public PriorityQueue(int v) {this.nodes = new Vertex[v+1];this.count = v;}public Vertex poll() { // TODO: 留给读者实现... }public void add(Vertex vertex) { // TODO: 留给读者实现...}// 更新结点的值,并且从下往上堆化,重新符合堆的定义。时间复杂度O(logn)。public void update(Vertex vertex) { // TODO: 留给读者实现...} public boolean isEmpty() { // TODO: 留给读者实现...}
}public void dijkstra(int s, int t) { // 从顶点s到顶点t的最短路径int[] predecessor = new int[this.v]; // 用来还原最短路径Vertex[] vertexes = new Vertex[this.v];for (int i = 0; i < this.v; ++i) {vertexes[i] = new Vertex(i, Integer.MAX_VALUE);}PriorityQueue queue = new PriorityQueue(this.v);// 小顶堆boolean[] inqueue = new boolean[this.v]; // 标记是否进入过队列vertexes[s].dist = 0;queue.add(vertexes[s]);inqueue[s] = true;while (!queue.isEmpty()) {Vertex minVertex= queue.poll(); // 取堆顶元素并删除if (minVertex.id == t) break; // 最短路径产生了for (int i = 0; i < adj[minVertex.id].size(); ++i) {Edge e = adj[minVertex.id].get(i); // 取出一条minVetex相连的边Vertex nextVertex = vertexes[e.tid]; // minVertex-->nextVertexif (minVertex.dist + e.w < nextVertex.dist) { // 更新next的distnextVertex.dist = minVertex.dist + e.w;predecessor[nextVertex.id] = minVertex.id;if (inqueue[nextVertex.id] == true) {queue.update(nextVertex); // 更新队列中的dist值} else {queue.add(nextVertex);inqueue[nextVertex.id] = true;}}}}// 输出最短路径System.out.print(s);print(s, t, predecessor);
}private void print(int s, int t, int[] predecessor) {if (s == t) return;print(s, predecessor[t], predecessor);System.out.print("->" + t);
}

我们用 vertexes 数组,记录从起始顶点到每个顶点的距离(dist)。起初,我们把所有顶点的 dist 都初始化为无穷大(也就是代码中的 Integer.MAX_VALUE)。我们把起始顶点的 dist 值初始化为 0,然后将其放到优先级队列中。

我们从优先级队列中取出 dist 最小的顶点 minVertex,然后考察这个顶点可达的所有顶点(代码中的 nextVertex)。如果 minVertex 的 dist 值加上 minVertex 与 nextVertex 之间边的权重 w 小于 nextVertex 当前的 dist 值,也就是说,存在另一条更短的路径,它经过 minVertex 到达 nextVertex。那我们就把 nextVertex 的 dist 更新为 minVertex 的 dist 值加上 w。然后,我们把 nextVertex 加入到优先级队列中。重复这个过程,直到找到终止顶点 t 或者队列为空。

以上就是 Dijkstra 算法的核心逻辑。除此之外,代码中还有两个额外的变量,predecessor 数组和 inqueue 数组。

predecessor 数组的作用是为了还原最短路径,它记录每个顶点的前驱顶点。最后,我们通过递归的方式,将这个路径打印出来。

inqueue 数组是为了避免将一个顶点多次添加到优先级队列中。我们更新了某个顶点的 dist 值之后,如果这个顶点已经在优先级队列中了,就不要再将它重复添加进去了。

在这里插入图片描述

理解了 Dijkstra 的原理和代码实现,我们来看下,Dijkstra 算法的时间复杂度是多少?

在刚刚的代码实现中,最复杂就是 while 循环嵌套 for 循环那部分代码了。while 循环最多会执行 V 次(V 表示顶点的个数),而内部的 for 循环的执行次数不确定,跟每个顶点的相邻边的个数有关,我们分别记作 E0,E1,E2,……,E(V-1)。如果我们把这 V 个顶点的边都加起来,最大也不会超过图中所有边的个数 E(E 表示边的个数)。

for 循环内部的代码涉及从优先级队列取数据、往优先级队列中添加数据、更新优先级队列中的数据,这样三个主要的操作。我们知道,优先级队列是用堆来实现的,堆中的这几个操作,时间复杂度都是 O(logV)(堆中的元素个数不会超过顶点的个数 V)。所以,综合这两部分,再利用乘法原则,整个代码的时间复杂度就是 O(E*logV)。

我们再来回答之前的问题,如何计算最优出行路线?

从理论上讲,用 Dijkstra 算法可以计算出两点之间的最短路径。但是,你有没有想过,对于一个超级大地图来说,岔路口、道路都非常多,对应到图这种数据结构上来说,就有非常多的顶点和边。如果为了计算两点之间的最短路径,在一个超级大图上动用 Dijkstra 算法,遍历所有的顶点和边,显然会非常耗时。那我们有没有什么优化的方法呢?

对于软件开发工程师来说,我们经常要根据问题的实际背景,对解决方案权衡取舍。类似出行路线这种工程上的问题,我们没有必要非得求出个绝对最优解。很多时候,为了兼顾执行效率,我们只需要计算出一个可行的次优解就可以了。

虽然地图很大,但是两点之间的最短路径或者说较好的出行路径,并不会很“发散”,只会出现在两点之间和两点附近的区块内。所以我们可以在整个大地图上,划出一个小的区块,这个小区块恰好可以覆盖住两个点,但又不会很大。我们只需要在这个小区块内部运行 Dijkstra 算法,这样就可以避免遍历整个大图,也就大大提高了执行效率。

我们再来看另外两个问题,最少时间和最少红绿灯。

前面讲最短路径的时候,每条边的权重是路的长度。在计算最少时间的时候,算法还是不变,我们只需要把边的权重,从路的长度变成经过这段路所需要的时间。不过,这个时间会根据拥堵情况时刻变化。

每经过一条边,就要经过一个红绿灯。关于最少红绿灯的出行方案,实际上,我们只需要把每条边的权值改为 1 即可,算法还是不变,可以继续使用前面讲的 Dijkstra 算法。不过,边的权值为 1,也就相当于无权图了,我们还可以使用之前讲过的广度优先搜索算法。因为我们前面讲过,广度优先搜索算法计算出来的两点之间的路径,就是两点的最短路径。

总结引申

今天,我们学习了一种非常重要的图算法,Dijkstra 最短路径算法。实际上,最短路径算法还有很多,比如 Bellford 算法、Floyd 算法等等。
这些算法实现思路非常经典,掌握了这些思路,我们可以拿来指导、解决其他问题。比如 Dijkstra 这个算法的核心思想,就可以拿来解决下面这个看似完全不相关的问题。为了在较短的篇幅里把问题介绍清楚,我对背景做了一些简化。

我们有一个翻译系统,只能针对单个词来做翻译。如果要翻译一整个句子,我们需要将句子拆成一个一个的单词,再丢给翻译系统。针对每个单词,翻译系统会返回一组可选的翻译列表,并且针对每个翻译打一个分,表示这个翻译的可信程度。

在这里插入图片描述
针对每个单词,我们从可选列表中,选择其中一个翻译,组合起来就是整个句子的翻译。每个单词的翻译的得分之和,就是整个句子的翻译得分。随意搭配单词的翻译,会得到一个句子的不同翻译。针对整个句子,我们希望计算出得分最高的前 k 个翻译结果,你会怎么编程来实现呢?

在这里插入图片描述
实际上,这个问题可以借助 Dijkstra 算法的核心思想,非常高效地解决。每个单词的可选翻译是按照分数从大到小排列的,所以 a0​b0​c0​ 肯定是得分最高组合结果。我们把 a0​b0​c0​ 及得分作为一个对象,放入到优先级队列中。

我们每次从优先级队列中取出一个得分最高的组合,并基于这个组合进行扩展。扩展的策略是每个单词的翻译分别替换成下一个单词的翻译。比如 a0​b0​c0​ 扩展后,会得到三个组合,a1​b0​c0​、a0​b1​c0​、a0​b0​c1​。我们把扩展之后的组合,加到优先级队列中。重复这个过程,直到获取到 k 个翻译组合或者队列为空。

在这里插入图片描述
我们来看,这种实现思路的时间复杂度是多少?

假设句子包含 n 个单词,每个单词平均有 m 个可选的翻译,我们求得分最高的前 k 个组合结果。每次一个组合出队列,就对应着一个组合结果,我们希望得到 k 个,那就对应着 k 次出队操作。每次有一个组合出队列,就有 n 个组合入队列。优先级队列中出队和入队操作的时间复杂度都是 O(logX),X 表示队列中的组合个数。所以,总的时间复杂度就是 O(knlogX)。那 X 到底是多少呢?

k 次出入队列,队列中的总数据不会超过 kn,也就是说,出队、入队操作的时间复杂度是 O(log(kn))。所以,总的时间复杂度就是 O(knlog(k*n)),比之前的指数级时间复杂度降低了很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/596480.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker安装Elasticsearch,kibana,ik分词器

安装elasticsearch 下载elasticsearch&#xff0c;查看版本&#xff1a;Elasticsearch Guide [8.11] | Elastic docker pull elasticsearch:7.17.16 查看镜像是否下载成功 docker images 创建网络&#xff0c;因为需要部署kibana容器&#xff0c;要让es和kibana容器互联 …

Spring——Spring基于注解的IOC配置

基于注解的IOC配置 学习基于注解的IOC配置&#xff0c;大家脑海里首先得有一个认知&#xff0c;即注解配置和xml配置要实现的功能都是一样的&#xff0c;都是要降低程序间的耦合。只是配置的形式不一样。 1.创建工程 1.1 pom.xml <?xml version"1.0" encoding…

2024 AIGC 应用层十大趋势;iPhone 遭史上最复杂攻击!丨 RTE 开发者日报 Vol.119

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE &#xff08;Real Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

数据库分区分表

分区分表 为什么要分库分表 软件时代&#xff0c;传统应用都有这样一个特点&#xff1a;访问量、数据量都比较小&#xff0c;单库单表都完全可以支撑整个业务。随着互联网的发展和用户规模的迅速扩大&#xff0c;对系统的要求也越来越高。因此传统的MySQL单库单表架构的性能问…

【 RF 射频 电缆】 MIL-C-17F 标准 规格

第〇、&#xff1f;&#xff1f; RGXXXXX 第一、应用场景 标准号应用场景–&#xff08;–&#xff09;RG-8 RG-9 RG-11粗缆以太网–RG-58细缆以太网–RG-59 RG-75电视系统–RG-62ARCnet网络和IBM 3270网络–RG142电信设备之间的互连 航空电子机架 雷达 GPS 医疗–RG178通信…

Spring常用注解及模拟用户登录流程示例

注解 Resource注解实现自动注入 (反射)代码块xml配置文件 Autowired注解实现自动化注入代码块xml配置文件 扫描器-四个注解Dao层-RepositoryService层-ServiceController层-Controller测试任意类-Component 常用注解示例-模拟用户登录配置自动扫描的xml文件实体类Userdao层消息…

几个有趣的go服务框架

开篇先吐槽几句&#xff5e; 我个人有一些习惯&#xff0c; 比如在服务设计时会考虑的比较长远&#xff0c;会考虑到到未来的扩展等等…然后程序设计的抽象成度就会比较高&#xff0c;各个模块之间解耦&#xff0c;但这样往往就会带来程序的复杂度提升。 这其实在一些公司里面…

微信小程序 ---- 通过 URLScheme 或 URLLink 从短信、邮件、微信外网页等场景打开小程序

1. 用于短信、邮件、网页、微信内等拉起小程序的方法 《URL Scheme 拉起小程序》《URL Link 拉起小程序》 2. 功能描述 URL Scheme: 该接口用于获取小程序 scheme 码&#xff0c;适用于短信、邮件、外部网页、微信内等拉起小程序的业务场景。目前仅针对国内非个人主体的小程…

奇技淫巧:如何给项目中的RabbitMQ添加总开关

本文主要分享了如何给项目中的RabbitMQ添加总开关&#xff0c;通过简单配置开/关RabbitMQ。 一、需求背景 SpringBoot项目里使用了RabbitMQ&#xff0c;但某些场景下&#xff0c;不希望项目启动时自动检查RabbitMQ连接 例如&#xff1a; 在开发不需要RabbitMQ的功能过程中&…

WEB:探索开源PDF.js技术应用

1、简述 PDF.js 是一个由 Mozilla 开发的开源 JavaScript 库&#xff0c;用于在浏览器中渲染 PDF 文档。它的目标是提供一个纯粹的前端解决方案&#xff0c;摆脱了依赖插件或外部程序的束缚&#xff0c;使得在任何支持 JavaScript 的浏览器中都可以轻松地显示 PDF 文档。 2、…

C语言中指针变量如何使用

一、指针变量的定义与声明 1.1 定义 指针变量是用来存储另一个变量的内存地址的变量。在C语言中&#xff0c;指针变量的类型是指向某个类型的指针。例如&#xff0c;int *p; 表示一个整型指针变量p。 1.2 声明 指针变量的声明分为两种形式&#xff0c;一种是直接声明&#…

linux-磁盘扩容 -- 小黑日常超细教程

hi~ 这次小黑带来的是linux磁盘扩容超细教学&#xff0c;按照步骤来&#xff0c;超容易~ 目录 模拟实验对象&#xff1a; 1、查看磁盘分区和挂载点 2、查看新增磁盘 3、将新磁盘格式化&#xff0c;建立新分区 4、查看vg卷组信息 5、分区添加卷组 6、扩容 问题&…

Android kotlin build.gradle.kts配置

1. 添加 maven 仓库 1. 1. settings配置 1. 1.1. settings.gradle repositories {maven {url https://maven.aliyun.com/repository/public/}mavenCentral() }1. 1.2. settings.gradle.kts repositories {maven {setUrl("https://maven.aliyun.com/repository/public/…

《Redis实战》学习笔记

特点 &#xff1a;1、是一个高性能的key/value内存型数据库 2、支持丰富的数据类型(string,List,Set,ZSet,Hash) 3、支持持久化 内存数据&#xff0c; 可以持久化到硬盘中 4、单进程&#xff0c;单线程 效率高 redis实现分布式锁 一、redis的相关指令 1、flushDB 清空当前…

Flink实时电商数仓之旁路缓存

撤回流的处理 撤回流是指流式处理过程中&#xff0c;两表join过程中的数据是一条一条跑过来的&#xff0c;即原本可以join到一起的数据在刚开始可能并没有join上。 撤回流的格式&#xff1a; 解决方案 定时器&#xff1a;使用定时器定时10s&#xff08;数据最大的时间差值&am…

7.14解数独(LC37-H)

算法&#xff1a; 二维递归&#xff08;递归时需要两层for循环&#xff09; 一个for循环放行 另一个for循环放列 画树&#xff1a; 因为这个树形结构太大了&#xff0c;我抽取一部分&#xff0c;如图所示&#xff1a; 回溯三部曲&#xff1a; 1.确定函数参数和返回值 返…

在Gradle工程中使用checkstyle来规范你的项目

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 系列专栏目录 [Java项…

CSS transition详解

文章目录 属性transition-propertytransition-durationtransition-timing-functiontransition-delaytransition 简写属性 方法Element&#xff1a;transitionrun 事件Element&#xff1a;transitionstart 事件Element&#xff1a;transitionend 事件Element&#xff1a;transit…

音频DAC,ADC,CODEC高性能立体声

想要让模拟信号和数字信号顺利“交往”&#xff0c;就需要一座像“鹊桥”一样的中介&#xff0c;将两种不同的语言转变成统一的语言&#xff0c;消除无语言障碍。这座鹊桥就是转换器芯片&#xff0c;也就是ADC芯片。ADC芯片的全称是Analog-to-Digital Converter, 即模拟数字转换…

【白盒测试】逻辑覆盖和路径测试的设计方法

&#x1f4e2;专注于分享软件测试干货内容&#xff0c;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01;&#x1f4e2;交流讨论&#xff1a;欢迎加入我们一起学习&#xff01;&#x1f4e2;资源分享&#xff1a;耗时200小时精选的「软件测试」资…