[NLP]LLM--transformer模型的参数量

1. 前言

最近,OpenAI推出的ChatGPT展现出了卓越的性能,引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面:模型参数规模大,训练数据规模大。以GPT3为例,GPT3的参数量为1750亿,训练数据量达到了570GB。进而,训练大规模语言模型面临两个主要挑战:显存效率和计算效率。

现在业界的大语言模型都是基于transformer模型的,模型结构主要有两大类:encoder-decoder(代表模型是T5)和decoder-only,具体的,decoder-only结构又可以分为Causal LM(代表模型是GPT系列)和Prefix LM(代表模型是GLM)。归因于GPT系列取得的巨大成功,大多数的主流大语言模型都采用Causal LM结构。因此,针对decoder-only框架,为了更好地理解训练训练大语言模型的显存效率和计算效率.
 

完整的Transformer模型包括encoder和decoder,而GPT只使用了decoder部分,且因为少了encoder,所以和原始的Transformer decoder相比,不再需要encoder-decoder attention层,对比图如下:

本文分析采用decoder-only框架transformer模型的模型参数量、计算量、中间激活值、KV cache。

`

为了方便分析,先定义好一些数学符号。记transformer模型的层数为 L ,隐藏层维度为 h ,注意力头数为 a。词表大小为 V,训练数据的批次大小为 b ,序列长度为 s。 

2. 模型参数量

可以参考:[NLP] BERT模型参数量_奇思闻影的舒克与贝克的博客-CSDN博客

基本方法一样

transformer模型由 L个相同的层组成,每个层分为两部分:self-attention块和MLP块。

Self-attention模块参数包含Q, K V 的权重矩阵Wq, Wk, Wv 输出及偏置Bias,4个权重矩阵形状为[h, h],4个偏置形状为[h], Self-attention参数量为4h^{2} + 4h

MLP块由2个线性层组成,一般地,第一个线性层是先将维度从 h 映射到 4h ,第二个线性层再将维度从4h映射到h。第一个线性层的权重矩阵 W1 的形状为 [h,4h] ,偏置的形状为 [4h] 。第二个线性层权重矩阵 W2 的形状为 [4h,h] ,偏置形状为 [h] 。MLP块的参数量为 8h^{2} + 5h

self-attention块和MLP块各有一个layer normalization,包含了2个可训练模型参数:缩放参数 gaama和平移参数 beta ,形状都是 [h] 。2个layer normalization的参数量为 4h 。

总的,每个transformer层的参数量为12h^{2} + 13h

除此之外,词嵌入矩阵的参数量也较多,词向量维度通常等于隐藏层维度 h ,词嵌入矩阵的参数量为 Vh 。最后的输出层的权重矩阵通常与词嵌入矩阵是参数共享的。

关于位置编码,如果采用可训练式的位置编码,会有一些可训练模型参数,数量比较少。如果采用相对位置编码,例如RoPE和ALiBi,则不包含可训练的模型参数。我们忽略这部分参数。

综上, L层transformer模型的可训练模型参数量为 L(12h^{2} + 13h)+Vh 。当隐藏维度 h 较大时,可以忽略一次项,模型参数量近似为 12Lh^{2}

接下来,我们估计不同版本LLaMA模型的参数量。

实际参数量隐藏维度h层数l12Lh^{2}
6.7B4096326,442,450,944
13.0B51204012,582,912,000
32.5B66566031,897,681,920
65.2B81928064,424,509,440

特此声明,此文主体参考知乎文章https://zhuanlan.zhihu.com/p/624740065(在此感该作者“回旋托马斯x”的辛苦付出)

参考

[1] https://arxiv.org/pdf/1706.03762.pdf
[2] https://arxiv.org/pdf/2302.13971.pdf
[3] https://arxiv.org/pdf/2104.04473.pdf
[4] https://zhuanlan.zhihu.com/p/624740065

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54402.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CodeLlama本地部署的实战方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

00-音视频-概述

有很多场合会使用的音视频,比如安防、视频闸机、影音播放器、视频通话,短视频等等。 从摄像头采集到用户观看,这中间涉及到了很多技术。 用户一般观看的高清视频1080P30帧。若按24位RGB对视频进行存储,一个60分钟视频所占空间 …

STM32 Cubemx配置串口收发

文章目录 前言注意事项Cubemx配置printf重定向修改工程属性修改源码 测试函数 前言 最近学到了串口收发,简单记录一下注意事项。 注意事项 Cubemx配置 以使用USART1为例。 USART1需配置成异步工作模式Asynchronous。 并且需要使能NVIC。 printf重定向 我偏向…

JMeter 接口自动化测试:从入门到精通的完全指南

JMeter 是一个开源的负载测试工具,它可以模拟多种协议和应用程序的负载,包括 HTTP、FTP、SMTP、JMS、SOAP 和 JDBC 等。在进行接口自动化测试时,使用 JMeter 可以帮助我们快速地构建测试用例,模拟多种场景,发现接口的性…

论文阅读_条件控制_ControlNet

name_en: Adding Conditional Control to Text-to-Image Diffusion Models name_ch: 向文本到图像的扩散模型添加条件控制 paper_addr: http://arxiv.org/abs/2302.05543 date_read: 2023-08-17 date_publish: 2023-02-10 tags: [‘图形图像’,‘大模型’,‘多模态’] author: …

什么是计算机视觉,计算机视觉的主要任务及应用

目录 1. 什么是计算机视觉 2. 计算机视觉的主要任务及应用 2.1 图像分类 2.1.1 图像分类的主要流程 2.2 目标检测 2.2.1 目标检测的主要流程 2.3 图像分割 2.3.1 图像分割的主要流程 2.4 人脸识别 2.4.1 人脸识别的主要流程 对于我们人类来说,要想认出身边…

生成地图展示【Python思路】

# 1.导包 import json from pyecharts.charts import Map #导入关于编写地图的包 from pyechart.options import * #全局设置# 2.得到地图对象 map Map()# 3.打开事先准备好的JSON数据文件 f open("D:/Typora 记事本/notebook/Python/Exercise_data/疫情.txt",&…

三个视角解读ChatGPT在教学创新中的应用

第一,我们正处于一个学生使用ChatGPT等AI工具完成作业的时代,传统的教育方法需要适应变化。 教育工作者不应该因为学生利用了先进技术而惩罚他们,相反,应该专注于让学生去挑战超越AI能力范围的任务。这需要我们重新思考教育策略和…

matlab使用教程(25)—常微分方程(ODE)选项

1.ODE 选项摘要 解算 ODE 经常要求微调参数、调整误差容限或向求解器传递附加信息。本主题说明如何指定选项以及每个选项与哪些微分方程求解器兼容。 1.1 选项语法 使用 odeset 函数创建 options 结构体,然后将其作为第四个输入参数传递给求解器。例如&#xff0…

Folyd 多源最短路

目录 简介 实现 代码 关于Floyd的题目 简介 首先我们要知道a到b的最短路是什么 a到b的最短路是从a点到b点的最小距离(花费) 那多源最短路呢就是能求任意a和b,之间的最短路 那么Folyd是多源最短路,也就是求任意a和b&#x…

python实现卡尔曼滤波代码详解

Kalman滤波算法的原理可以参考: 卡尔曼滤波理解 python中filterpy库中实现了各种滤波算法, 其中就包括了kalman滤波算法。 具体实现代码: https://github.com/rlabbe/filterpy/blob/master/filterpy/kalman/kalman_filter.py 本文针对该代码…

视频云存储/安防监控EasyCVR视频汇聚平台接入GB国标设备时,无法显示通道信息该如何解决?

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

三极管NPN、PNP的区别及简单应用

目录 一、NPN、PNP三极管的概念 二、NPN、PNP三极管的区别 三、三极管NPN、PNP的简单应用 一、NPN、PNP三极管的概念 NPN型三极管: 由两块N型半导体和一块P型半导体组成,P型半导体在中间,两块N型半导体在两侧。 三极管是电子电路中最重要的…

elementui table 在浏览器分辨率变化的时候界面异常

异常点: 界面显示不完整,表格卡顿,界面已经刷新完成,但是表格的宽度还在一点一点变化,甚至有无线延伸的情况 思路: 1. 使用doLayout 这里官方文档有说明, 所以我的想法是,监听浏览…

Jetbrains IDE新UI设置前进/后退导航键

背景 2023年6月,Jetbrains在新发布的IDE(Idea、PyCharm等)中开放了新UI选项,我们勾选后重启IDE,便可以使用这一魔性的UI界面了。 但是前进/后退这对常用的导航键却找不到了,以前的设置方式(Vi…

【C++】容器适配器stack、queue以及deque容器

🏖️作者:malloc不出对象 ⛺专栏:C的学习之路 👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈 目录 前言一、什么是容器适配器1.1 stack的…

Redis 的混合持久化

RDB 相比于 AOF,数据恢复的速度更快,因为是二进制数据,直接加载进内存即可,但是 RDB 的频率不好把握。 如果频率太低,在两次快照期间服务器发生宕机,可能会丢失较多的数据如果频率太高,频繁写入…

研磨设计模式day12迭代器模式

目录 场景 解决方案 解决思路 代码示例 代码改造 Java实现迭代器 迭代器模式的优点 思考 何时选用 场景 大公司收购了一个小公司,大公司的工资系统采用List来记录工资列表,而小公司是采用数组,老板希望通过决策辅助系统来统一查看…

Android studio之GridView使用

目录 效果图:![在这里插入图片描述](https://img-blog.csdnimg.cn/86e4a48a71164dec82613d58b1fbaa1c.jpeg)代码: 效果图: 代码: UserGridviewAdapter package com.example.gridviewpro.Adapter;import android.content.Contex…

202 | 抽象类、接口、内部类

抽象类 abstract 注意项 父类方法需要声明,但是有不确定性,考虑将该方法设计为抽象方法抽象方法没有实现的方法没有方法体(跟接口的区别?)抽象方法的类必须设置为抽象类,实现方法由其子类实现 abstract …