【C++】容器适配器stack、queue以及deque容器

🏖️作者:@malloc不出对象
⛺专栏:C++的学习之路
👦个人简介:一名双非本科院校大二在读的科班编程菜鸟,努力编程只为赶上各位大佬的步伐🙈🙈
在这里插入图片描述

目录

    • 前言
    • 一、什么是容器适配器
      • 1.1 stack的介绍
      • 1.2 stack的使用
      • 1.3 queue的介绍
      • 1.4 queue的使用
    • 二、stack的模拟实现
    • 三、queue的模拟实现
    • 四、deque的简单介绍
      • 4.1 deque的原理介绍
      • 4.2 deque的缺陷
      • 4.3 性能测试
      • 4.3 为什么选择 deque 作为 stack 和 queue 的底层默认容器
      • 4.4 STL标准库中对于stack和queue的模拟实现


前言

本篇文章我们主要讲解的是C++中的容器适配器(stack、queue)以及它们的模拟实现!!还提到了容器deque和它的优缺点!!

一、什么是容器适配器

容器适配器是STL(标准模板库)中的一种特殊容器,它们通过在现有的容器之上提供新的接口和功能来改变现有容器的行为,可以帮助简化某些特定类型的操作。
容器适配器提供了许多不同的功能,包括栈(stack)、队列(queue)、优先队列(priority_queue)等。它们都是基于其他STL容器(如vector、deque、list)实现的,因此可以使用这些容器提供的底层数据结构来支持它们的操作。
总之,容器适配器是STL中的一种重要组件,它们提供了一种简单易用的方式来实现特定数据结构的操作,从而提高了编程效率和代码的可读性。同时,对于一些需要高效数据结构的场景,应该根据实际需求选择最适合的数据结构。

1.1 stack的介绍

关于stack想必不用我过多的进行介绍了吧,其中它最大的特点就是后进先出,在我们很多的设计场景中经常出现!!

  1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
  2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
  3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:
    empty:判空操作
    back:获取尾部元素操作
    push_back:尾部插入元素操作
    pop_back:尾部删除元素操作
  4. 标准容器vector、deque、list均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque.
    在这里插入图片描述

1.2 stack的使用

函数说明接口说明
empty()判断栈是否为空
size()返回栈中元素的个数
top()返回栈顶元素的引用
push()将元素压入栈中
pop()将栈顶元素弹出

栈的使用成本很低,下面我们来简单的使用演示一下:

在这里插入图片描述

1.3 queue的介绍

  1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。
  2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列。
  3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
    empty:检测队列是否为空
    size:返回队列中有效元素的个数
    front:返回队头元素的引用
    back:返回队尾元素的引用
    push_back:在队列尾部入队列
    pop_front:在队列头部出队列
  4. 标准容器类deque和list满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque.

1.4 queue的使用

函数说明接口说明
empty()判断队列是否为空
size()返回队列中元素的个数
front()返回队头元素的引用
back()返回队尾元素的引用
push()在队尾压入元素
pop()将队头元素出队列

我们简单的看下queue的使用:

在这里插入图片描述

二、stack的模拟实现

stack作为容器适配器,它可以通过使用 vector、list 和 deque等底层容器来实现它的函数接口,stl中的 stack和queue都是默认使用双端队列 deque来进行封装的,后续我们会谈及deque双端队列,下面我们默认使用的vector容器进行包装。

// stack.h
namespace curry
{template<class T, class Container = vector<T>>class stack{public:void push(const T& x){_con.push_back(x);}void pop(){_con.pop_back();}const T& top(){return _con.back();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};void test_stack(){stack<int> st;st.push(1);st.push(2);st.push(3);st.push(4);cout << st.size() << endl;while (!st.empty()){cout << st.top() << " ";st.pop();}cout << endl;}
}

在这里插入图片描述

三、queue的模拟实现

由于queue队列支持头插与头删,而我们的vector容器是不支持头插头删的,因为这样会大量挪动数据影响效率,所以这里我们采用list容器对它进行包装。

// queue.h
namespace curry
{template<class T, class Container = list<T>>class queue{public:void push(const T& x){_con.push_back(x);}// 队头出void pop(){_con.pop_front();}const T& back(){return _con.back();}const T& front(){return _con.front();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};void test_queue(){queue<int> q;q.push(1);q.push(2);q.push(3);q.push(4);cout << q.size() << endl;cout << q.back() << endl;while (!q.empty()){cout << q.front() << " ";q.pop();}cout << endl;}
}

在这里插入图片描述

四、deque的简单介绍

4.1 deque的原理介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
在这里插入图片描述

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:

在这里插入图片描述

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:

在这里插入图片描述

那deque是如何借助其迭代器维护其假想连续的结构呢?

在这里插入图片描述

下面我们简单的来看看deque的使用:

在这里插入图片描述

那么既然deque同时拥有了vector与list的性能,为何deque没有取代它们呢?

答案很显然,deque并没有想象中的那么强大,因为它是有很大缺陷的。

4.2 deque的缺陷

与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。
与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

4.3 性能测试

#include <deque>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;// N个数据需要排序,vector+ 算法sort  deque+ sort
void Test()
{srand(time(0));const int N = 1000000;vector<int> v;v.reserve(N);deque<int> dq;for (int i = 0; i < N; ++i){auto e = rand();v.push_back(e);dq.push_back(e);}int begin1 = clock();sort(v.begin(), v.end());int end1 = clock();int begin2 = clock();sort(dq.begin(), dq.end());int end2 = clock();printf("vector sort:%d\n", end1 - begin1);printf("dequeue sort:%d\n", end2 - begin2);
}int main()
{Test();return 0;
}

在这里插入图片描述

在release版本下vector随机访问的速度大概是deque的两倍,而debug下deque的随机访问的速度比vector要慢上3倍多,可见deque随机访问的速率不如vector极致!!这是因为deque设计的机制导致随机访问的速率更慢。

4.3 为什么选择 deque 作为 stack 和 queue 的底层默认容器

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
  2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
    结合了deque的优点,而完美的避开了其缺陷。

4.4 STL标准库中对于stack和queue的模拟实现

stack的模拟实现

在这里插入图片描述

namespace curry
{template<class T, class Container = deque<T>>class stack{public:void push(const T& x){_con.push_back(x);}void pop(){_con.pop_back();}const T& top(){return _con.back();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};
}

在这里插入图片描述

queue的模拟实现:

在这里插入图片描述

namespace curry
{template<class T, class Container = deque<T>>class queue{public:void push(const T& x){_con.push_back(x);}// 队头出void pop(){_con.pop_front();}const T& back(){return _con.back();}const T& front(){return _con.front();}size_t size(){return _con.size();}bool empty(){return _con.empty();}private:Container _con;};
}

在这里插入图片描述


本篇文章的内容就到这里了,如果文章有任何疑问或者错处欢迎大家评论区相互交流orz~🙈🙈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/54380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis 的混合持久化

RDB 相比于 AOF&#xff0c;数据恢复的速度更快&#xff0c;因为是二进制数据&#xff0c;直接加载进内存即可&#xff0c;但是 RDB 的频率不好把握。 如果频率太低&#xff0c;在两次快照期间服务器发生宕机&#xff0c;可能会丢失较多的数据如果频率太高&#xff0c;频繁写入…

研磨设计模式day12迭代器模式

目录 场景 解决方案 解决思路 代码示例 代码改造 Java实现迭代器 迭代器模式的优点 思考 何时选用 场景 大公司收购了一个小公司&#xff0c;大公司的工资系统采用List来记录工资列表&#xff0c;而小公司是采用数组&#xff0c;老板希望通过决策辅助系统来统一查看…

Android studio之GridView使用

目录 效果图&#xff1a;![在这里插入图片描述](https://img-blog.csdnimg.cn/86e4a48a71164dec82613d58b1fbaa1c.jpeg)代码&#xff1a; 效果图&#xff1a; 代码&#xff1a; UserGridviewAdapter package com.example.gridviewpro.Adapter;import android.content.Contex…

202 | 抽象类、接口、内部类

抽象类 abstract 注意项 父类方法需要声明&#xff0c;但是有不确定性&#xff0c;考虑将该方法设计为抽象方法抽象方法没有实现的方法没有方法体&#xff08;跟接口的区别&#xff1f;&#xff09;抽象方法的类必须设置为抽象类&#xff0c;实现方法由其子类实现 abstract …

nuxt.js框架使用swiper的5.4.5版本记录,创建广告位幻灯片

nuxt依赖 “nuxt”: “^2.15.8”, “swiper”: “^5.4.5”, “vue”: “^2.7.10”, “vue-awesome-swiper”: “^4.1.1”, 需要完成的效果是 参考地址&#xff1a;https://3.swiper.com.cn/demo/pcSlide/ nuxt代码&#xff1a; <template><div class"page&quo…

ServiceManger Binder的处理流程

陌生知识点如下&#xff1a; BinderProxy&#xff1a;是将Native层的BpBinder对象进行封装后传给Java层使用的Binder对象android_util_binder: Binder在JNI层的相关注册&#xff0c;处理&#xff0c;转换封装接口BpBinder:Binder驱动在Native层的封装。IPCThreadState&#xf…

机器学习的测试和验证(Machine Learning 研习之五)

关于 Machine Learning 研习之三、四&#xff0c;可到秋码记录上浏览。 测试和验证 了解模型对新案例的推广效果的唯一方法是在新案例上进行实际尝试。 一种方法是将模型投入生产并监控其性能。 这很有效&#xff0c;但如果你的模型非常糟糕&#xff0c;你的用户会抱怨——这…

Sentinel 控制台(集群流控管理)

规则配置 要通过 Sentinel 控制台配置集群流控规则&#xff0c;需要对控制台进行改造。我们提供了相应的接口进行适配。 从 Sentinel 1.4.0 开始&#xff0c;我们抽取出了接口用于向远程配置中心推送规则以及拉取规则&#xff1a; DynamicRuleProvider<T>: 拉取规则Dy…

jvm开启远程调试功能;idea远程debug

概述 有时候一些问题本地调试无法复现&#xff0c;这个时候可以开启jvm的远程调试功能 jar包启动 jdk8 java -agentlib:jdwptransportdt_socket,address8787,servery,suspendn -jar xxx.jarjdk11/17 java -agentlib:jdwptransportdt_socket,address*:8787,servery,suspe…

关于ios Universal Links apple-app-site-association文件 Not Found的问题

1. 背景说明 1.1 Universal Links 是什么 Support Universal Links 里面有说到 Universal Links 是什么、注意点、以及如何配置的。简单来说就是 当您支持通用链接时&#xff0c;iOS 用户可以点击指向您网站的链接&#xff0c;并无缝重定向到您安装的应用程序 大白话就是说&am…

APP爬虫之-Protobuf协议逆向解析

在做APP抓取时&#xff0c;会发现有的APP Response回来的数据有“加密”。不知道返回的内容是什么。 如下&#xff1a; 如上&#xff0c;内容不是明文的&#xff0c;没办法解析数据。APP常见的对数据加密有三种情况&#xff1a;第一种是&#xff0c;用诸如AES这类加密算法对数…

R语言绘图相关函数(含实例)

目录 plot:可用于创建多种类型的图形 dev.new():新建画板 hist&#xff1a;绘制直方图 dotchart&#xff1a;绘制点图的函数 pie:绘制饼图 pair&#xff1a;绘制散点图矩阵 boxplot&#xff1a;绘制箱线图 scatterplot3D&#xff1a; 绘制三维散点图 par&#xff1a;修…

【动态规划】1137. 第 N 个泰波那契数

Halo&#xff0c;这里是Ppeua。平时主要更新C&#xff0c;数据结构算法&#xff0c;Linux与ROS…感兴趣就关注我bua&#xff01; 文章目录 0. 题目解析1.算法原理1.1 状态表示1.2 状态转移方程1.3初始化1.4 填表顺序1.5 返回值 2.算法代码 &#x1f427; 本篇是整个动态规划的…

【八股】2023秋招八股复习笔记4(MySQL Redis等)

文章目录 目录1、MySQLmysql索引实现mysql索引优化mysql索引失效的情况mysql 千万数据优化mysql 事务隔离级别 & 实现原理mysql MVCC版本链&#xff08;undo log&#xff09;mysql数据同步机制 & 主从复制 &#xff08;binlog&#xff09;mysql 日志&数据恢复&…

Springboot开发所遇问题(持续更新)

SpringBoot特征&#xff1a; 1. SpringBoot Starter&#xff1a;他将常用的依赖分组进行了整合&#xff0c;将其合并到一个依赖中&#xff0c;这样就可以一次性添加到项目的Maven或Gradle构建中。 2,使编码变得简单&#xff0c;SpringBoot采用 JavaConfig的方式对Spring进行配置…

3D姿态相关的损失函数

loss_mpjpe: 计算预测3D关键点与真值之间的平均距离误差(MPJPE)。 loss_n_mpjpe: 计算去除尺度后预测3D关键点误差(N-MPJPE),评估结构误差。 loss_velocity: 计算3D关键点的速度/移动的误差,评估运动的平滑程度。 loss_limb_var: 计算肢体长度的方差,引导生成合理的肢体长度…

Redis通信协议

文章目录 Redis通信协议RESP协议数据类型 模拟Redis客户端 Redis通信协议 RESP协议 Redis是一个CS架构的软件&#xff0c;通信一般分为两步(不包含pipeline和PubSub)&#xff1a; 客户端(client)向服务端(server)发送一条命令。服务器解析并执行命令&#xff0c;返回响应结果…

Java面试题—2023年8月25日—PLKJ

2023年8月25日 北京 png ln kē j 答案仅供参考&#xff0c;博主仅记录发表&#xff0c;没有实际查询&#xff0c;不保证正确性。 面试题&#xff1a; 一.选择题 1.下面哪些是不合法的标识符 A.$persons B.TwoUsers C.*point D._endline 2. 下列语句执行后&#xff0c;k的值为…

Nginx 高级配置

目录 1 网页的状态页 2 Nginx 第三方模块 2.1 ehco 模块 3 变量 3.1 内置 3.2 定义变量 4 Nginx压缩功能 5 https 功能 6 自定义图标 1 网页的状态页 基于nginx 模块 ngx_http_stub_status_module 实现&#xff0c;在编译安装nginx的时候需要添加编译参数 --with-http…

Mysql with as定义子查询

文章目录 1. 定义2. 适用场景3. 语法4. 示例 1. 定义 使用with as 可以让子查询重用相同的with查询块&#xff0c; 并在select查询块中直接引用&#xff0c; 一般用在select查询块会多次使用某个查询sql时&#xff0c; 会把这个sql语句放在with as 中&#xff0c; 作为公用的表…