http://wikioi.com/problem/1077/
Floyd算法。精华是三层循环,if (dist(i,k) + dist(k,j) < dist(i,j)) then dist(i,j) = dist(i,k) + dist(k,j)。
但循环的顺序必须k放在最外层,否则会错,因为有可能赋值给dist(i,j)的dist(i,k)和dist(k,j)都还不是最小的,会在之后更新。那么把k放在最外层就对了怎么理解呢?
其本质是一个动态规划:http://lxk3028.blog.163.com/blog/static/37546415200910270028752/
令c[i,j,k]表示从i到j所通过的中间顶点最大不超过k的最短路径的长度,。对于任意的k>0,通过分析可以得到:中间顶点不超过k的i到j的最短路径有两种可能:该路径含或不含中间顶点k。
状态转移方程:c[i,j,k]=min{c[i,j,k-1], c[i,k,k-1]+c[k,j,k-1]},k>0。
所以我们平时看到的Floyd算法就是该动态规划的精简版。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <memory.h>
#define MAX(a, b) a>b?a:b
#define LEN 105
using namespace std;int n;
int graph[LEN][LEN];void init()
{memset(graph, 0, sizeof(graph));scanf("%d", &n);for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {scanf("%d", &graph[i][j]);}}
}void floyd()
{for (int k = 1; k <= n; k++) {for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {if (i != j && i != k && j != k) {if (graph[i][k]+graph[k][j] < graph[i][j]) {graph[i][j] = graph[i][k]+graph[k][j];}}}}}
}int main()
{init();floyd();int q = 0;scanf("%d", &q);while (q--) {int a = 0;int b = 0;scanf("%d%d", &a, &b);printf("%d\n", graph[a][b]);}return 0;
}