.prototxt文件 定义了网络的结构,我们可以通过它了解网络是如何设计的,也可以建立属于自己的网络。这种格式来源于Google的Protocol Buffers,后来被开源,主要用于海量数据存储、传输协议格式等场合。https://blog.csdn.net/liuyuzhu111/article/details/52253491
针对xml解析对时间和空间的开销较大的缺点进行了改进,兼容多种语言,向前/向后兼容,具有生成代码的机制。
lenet_train_test.prototxt 是经典的lenet网络的文件,使用在MNIST手写字符分类中。下面是对它的一些简单的注释
name: "LeNet"
layer {name: "mnist"type: "Data"top: "data" //输出datatop: "label" //输出标签include {phase: TRAIN //在训练阶段才在网络中加入这一层}transform_param {#mean_file: "mean.binaryproto" //均值文件scale: 0.00390625 //对所有的图片归一化到0~1之间,也就是对输入数据全部乘以scale,0.0039= 1/255}data_param {source: "examples/mnist/mnist_train_lmdb" // 从指定路径读取文件 所以没有bottombatch_size: 64 //batch大小是64 太大不行 太小也不行 等于1时是online learningbackend: LMDB //数据类型是lmdb}
}
layer {name: "mnist"type: "Data"top: "data"top: "label"include {phase: TEST //在测试阶段才在网络中加入这一层}transform_param {#mean_file: "mean.binaryproto"scale: 0.00390625}data_param {source: "examples/mnist/mnist_test_lmdb"batch_size: 100backend: LMDB}
}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"param {lr_mult: 1 //学习率 在这种情况下,我们将设置权重学习率与求解器在运行时给出的学习率相同,//并且偏差学习率为此的两倍 - 这通常会导致更好的收敛率。}param {lr_mult: 2}convolution_param {num_output: 20 //产生20个通道kernel_size: 5 //卷积核大小stride: 1 //卷积核滑动步长weight_filler { //权重初始化type: "xavier"//该算法将根据输入和输出的神经元数目自动确定初始化的规模}bias_filler { //偏置填充初始化type: "constant"}}
}
layer {name: "pool1"type: "Pooling"bottom: "conv1"top: "pool1"pooling_param {pool: MAX //最大池化kernel_size: 2 //每个pool大小是2x2
stride: 2 //步长2,大小2x2,所以没有重叠}
}
layer {name: "conv2"type: "Convolution"bottom: "pool1" //连接在pool1层之后 top: "conv2"param {lr_mult: 1}param {lr_mult: 2}convolution_param {num_output: 50kernel_size: 5stride: 1weight_filler {type: "xavier"}bias_filler {type: "constant" }}
}
layer {name: "pool2"type: "Pooling"bottom: "conv2"top: "pool2"pooling_param {pool: MAXkernel_size: 2stride: 2}
}
layer {name: "ip1"type: "InnerProduct" //内积?bottom: "pool2"top: "ip1"param {lr_mult: 1}param {lr_mult: 2}inner_product_param {num_output: 500weight_filler {type: "xavier"}bias_filler {type: "constant"}}
}
layer { //同址计算(in-place computation,返回值覆盖原值而占用新的内存)//neuron_layers.hpp中,其派生类主要是元素级别的运算(比如Dropout运算,激活函数ReLu,Sigmoid等name: "relu1"//ReLU是按元素操作的,in-place操作,节省内存type: "ReLU"//通过让输入输出同名,即新的变量代替之前的bottom: "ip1"top: "ip1"
}
layer {name: "ip2"type: "InnerProduct"bottom: "ip1"top: "ip2"param {lr_mult: 1}param {lr_mult: 2}inner_product_param {num_output: 10weight_filler {type: "xavier"}bias_filler {type: "constant"}}
}
layer {name: "accuracy"type: "Accuracy"bottom: "ip2"bottom: "label"top: "accuracy"include { //决定了这一层什么时候被包含在网络中phase: TEST // accuracy只存在于测试阶段}
}
layer {name: "loss"type: "SoftmaxWithLoss"bottom: "ip2"bottom: "label"top: "loss"
}