“AI工厂”本质:AI基础设施及怎样将AI转化为运营动力

来源:TechTalks

作者:Ben Dickson

编译:科技行者

持续关注人工智能新闻的朋友肯定已经发现,AI这个字眼已经被异化成了两个截然不同的定义。媒体和影视作品喜欢把AI描述成已然具备人类般的能力、会导致大量失业甚至会出动机械部队进行人类清剿的末日威胁。但在另一方面,学术研究则更多关注人工智能的具体发展,并承认目前的AI还非常弱小、无法实现人类思维体系中的大部分基本能力。 

但至少可以肯定的是,如今的AI算法已经在医疗保健、金融、制造以及运输等领域成为重要的解决方案组件。正如哈佛商学院教授Marco Iansiti与Karim Lakhani在其著作《人工智能时代的竞争:算法与网络为主导的时代下的战略与领导力》一文中所提到,不久之后,“一切人类事务将再也离不开人工智能的辅助。” 

事实上,就是目前的“弱”AI已然引领了谷歌、Amazon、微软乃至Facebook等科技巨头的发展与成功,并给全球数十亿民众的日常生活带来影响。Lakhani与Iansiti在自己的书中提到,“在实际应用中,我们需要的并不一定是完美的人工智能。不够完美的AI也足以对社交网络上的内容进行优先级排序、制作品质完美的卡布奇诺咖啡、分析客户行为、设定最佳价格甚至以完成不同的风格创造画作。事实上,这种不完美的弱AI足以改变企业的性质及其运营方式。” 

而哪家企业能够真正将AI转化为运营动力,谁就能开拓出新的市场空间并颠覆传统行业。能够适应AI时代的老牌厂商将生存下来并继续蓬勃发展。而继续固守传统方法的公司则错失AI之力,要么不复存在、要么被彻底边缘化。 

Iansiti与Lakhani在书中讨论了诸多主题,其中一大核心正是概念AI工厂,他们将其视为企业在AI时代竞争并发展的关键性前提。 

问题是,“AI工厂”究竟是什么? 

在当今业务体系中,最关键的AI技术在于机器学习算法。算法的实质属于统计引擎,负责从以往观察到的数据内收集模式,并据此预测新的结果。机器学习算法与其他关键组件(包括数据源、实验与软件等)融合起来就建立起AI工厂,代表一组能够相互连接、促进学习与发展的组件与流程。 

这就是AI工厂的运作方式。从内部及外部来源获取高质量数据以训练机器学习算法,再使用算法对特定任务执行预测。在某些情况下,例如疾病诊断与治疗等,这类预测可以帮助人类专家做出准确的判断。而在其他领域(例如内容推荐)当中,机器学习算法可以在几乎无需任何人为干预的情况下自动完成所有任务。 

AI工厂的算法与数据驱动模型,使得各类组织得以快速测试新的假设,进而推出变更以不断改善自身系统。具体措施可以是向现有产品中添加新的功能,也可以在公司的现有资产基础之上开发新的产品。这一切变化又反过来帮助企业掌握更多新数据、改进AI算法,并再次找到提高性能,创建新服务和产品,通过这样的良性循环保持发展并冲击种种新的市场区间。 

Iansiti与Lakhani在《AI时代的竞争》中写道,“从本质上讲,AI工厂在用户参与、数据收集、算法设计、预测与改进等环节之间建立起一条完整的良性闭环。” 

这种将构建、衡量、学习与改进环节串连起来的想法并不是什么新鲜事物。企业家与初创公司已经在这一领域拥有多年的理论与实践经验。但是,AI工厂凭借着强大的自然语言处理与计算机视觉技术,将这一循环提升到了新的高度,由此在最近几年中迈出了全面普及的重要一步。 

《AI时代的竞争》中还列举了蚂蚁金服(现为蚂蚁集团)的案例。该公司成立于2014年,拥有9000名员工,目前为超过7亿用户提供广泛的金融服务。而这种前所未有的运营服务效率,依靠的正是高效的AI工厂与卓越领导。相比之下,美国银行成立于1924年,拥有209000名员工,而服务的对象仅为6700万用户、产品种类也更为有限。 

Iansiti与Lakhani感叹道,“蚂蚁金服开辟出全新的金融服务概念。” 

“AI工厂”的基础设施 

众所周知,机器学习算法高度依赖于大规模数据。目前,关于数据的价值已经有很多耳熟能详的比喻,例如“数据就是新的石油”,这种陈词滥调多见于各类纸头报端。 

但单凭大量数据绝不可能成就好的AI算法。实际上,很多企业都掌握着大量数据储备,但他们的数据与软件各自居于孤岛之内,存储形式不统一、模型与框架也互不兼容。 

Iansiti与Lakhani写道,“即使客户将企业视为统一的实体,但事实上企业在各内部机构、部门以及跨职能区划间的系统与数据大多彼此分散,导致数据难以聚合,延迟了洞见的产生速度,最终导致人们无法充分动用分析与人工智能的力量。” 

此外,在将数据馈送至AI算法之前,我们还需要进行数据预处理。例如,你可能希望使用客户往来聊天记录开发一个AI驱动型聊天机器人,由其自动为部分客户提供支持服务。在这类场景下,我们首先需要对文本数据进行合并、令牌化、去除多余的词汇及标点符号、辅以其他转换,而后才能将其用于训练机器学习模型。 

即使面对销售记录等结构化数据时,其中同样可能存在空缺、信息丢失乃至其他需要处理的不确切之处。再有,如果数据来自多种来源,则需要以不致引起误差的方式加以聚合。如果未经预处理,大家只能使用低质量数据训练机器学习模型,最终导致AI系统性能不佳。 

最后,内部数据源可能在体量上不足以支撑AI管道的开发。有时候,大家还需要借助外部来源进行信息补充,例如收集来自社交媒体、股市、新闻等来源的数据。以BlueDot为例,该公司使用机器学习预测传染病的传播情况。为了训练并运行其AI系统,BlueDot会自动从数百个来源处收集信息,包括来自卫生组织的声明、商业航班、牲畜健康报告、卫星气候数据以及新闻报道等等。该公司的大部分工作内容乃至软件方案都围绕数据的收集与聚合设计而生。 

在《AI时代的竞争》中,两位作者介绍了“数据管道”的概念,通过一组组件与流程对来自多个内部及外部来源的数据进行合并、清洗以及集成,而后处理并存储结果以供不同AI系统使用。但更重要的是,数据管道必须以“系统化、可持续且可扩展的方式运作”,意味着应尽可能避免手动操作以消除AI工厂中的一切潜在瓶颈。 

Iansiti与Lakhani还进一步探讨了AI工厂所面临的其他挑战,例如如何为监督机器学习算法建立正确的指标与特征,在人类专家洞见与AI预测结果之间找到正确的缺失环节,以及如何应对运行层面的挑战并验证结果。 

作者们写道,“如果将数据视为向AI工厂提供动力的燃料,那么基础设施就是输送燃料的管道,而算法则是完成工作的机器。反过来,实验平台则是负责将燃料、管道与机器接入现有操作系统的阀门。” 

转型为AI公司 

从各个角度来看,建立一家成功的AI公司不仅需要克服工程技术层面的挑战,更需要解决产品管理领域的诸多难题。事实上,不少成功企业已经找到了以AI技术为基础建立长期文化与业务流程的实践方法,而不再单纯尝试将深度学习的最新成果强行融入难以与之匹配的传统基础设施。 

这种方式对于初创企业及传统主流公司都同样适用。正如Iansiti与Lakhani在《AI时代的竞争》中所阐述,只有那些不断改变自身运营及商业模式的企业,才能在这样一个新时代下生存下来。 

他们写道,“对于传统企业而言,要想转型为一家基于软件的AI驱动型公司,必须要采取完全不同的组织形式,并把转型视为一种新的常态。这并不是说单纯建立起新的部门、AI专项团队或者是偶发性的开发流程,而应建立起由敏捷组织支持的、以数据为中心的新型运营体系,这将从根本上扭转公司的运营核心。” 

《AI时代的竞争》还提供丰富的相关案例研究。其中包括Peloton(彻底颠覆了传统家庭运动器材市场)与Ocado(利用AI技术实现低利润日用百货的数字化转型)等初创企业从零开始建立AI工厂的趣闻轶事。此外,知名科技企业也将以案例形式出现,包括通过多次成功转型在AI时代实现蓬勃发展的微软,以及动用数字化及人工智能技术克服自身固有缺陷的沃尔玛等等。 

AI技术的兴起,也给“网络效应”带来了新的含义。事实上,这种现象自搜索引擎与社交网络诞生之初就成为科技企业的重要研究对象。《AI时代的竞争》讨论了网络领域的各个层面与类型,涵盖如何通过将AI算法集成至网络之内以促进增长、推动学习并改进产品。 

正如行业专家们观察到的那样,AI技术的进步将给各类组织内的每一位技术人员乃至运营人员产生影响。Iansiti与Lakhani表示,“许多优秀的管理者需要重新接受培训并学习AI领域的基础知识,了解如何在组织业务及运营模型中有效部署这项技术。但需要强调的是,他们并不需要成为真正的数据科学家、统计学家、程序员或者AI工程师;正如每位MBA学员都需要掌握一定的财会及运营知识,但却不必成为专业会计一样,如今的企业管理员也需要以同样的方式对AI以及相关技术建立起初步的认知与理解。”

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/485729.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

继续深入更新shell脚本容易出错的地方

一、在shell中用到如果需要输入某些值,需要用到read -p命令 这是我写的猜数字游戏,一开始在输出的时候,屏幕上总会打印输出 "INT" 经过反复的练习才发现 双引号后面应该跟着一个空格,然后在写变量,就不会把…

中国工程院发布2021中国电子信息工程科技发展十四大趋势

来源:人民邮电报1月5日,中国工程院信息与电子工程科技发展战略研究中心发布“中国电子信息工程科技发展十四大趋势(2021)”。这十四大趋势涵盖信息化、计算机系统与软件、网络与通信、计算机应用、网络安全、集成电路、数据、感知…

AcWing--2.01背包问题

有 NN 件物品和一个容量是 VV 的背包。每件物品只能使用一次。 第 ii 件物品的体积是 vivi,价值是 wiwi。 求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。 输出最大价值。 输入格式 第一行两个整数&#xff…

java实现数组排序代码_Java使用选择排序法对数组排序实现代码

编写程序,实现将输入的字符串转换为一维数组,并使用选择排序法对数组进行排序。思路如下:点击"生成随机数"按钮,创建Random随机数对象;使用JTextArea的setText()方法清空文本域;创建一个整型一维…

ICinsights:中国芯片难达成既定的2025目标

来源:内容由半导体行业观察(ID:icbank)综合自「ICinsights」,谢谢。据知名分析机构ICinsights报道,在中国的集成电路市场和中国的本土集成电路生产之间应该有一个非常明显的区别。正如IC Insights经常指出的…

2021年5G发展展望

来源:中国电子信息产业发展研究院(转载请注明来源)编辑: 蒲蒲日前,在2020通信产业大会暨第十五届通信技术年会上,工信部赛迪智库发布了《5G发展2021展望白皮书》。白皮书内容包括对2021年5G形势的基本判断、…

博弈论笔记--03--迭代剔除和中位选民定理

迭代剔除策略:先站在所有人的角度,删除所有的劣势策略,然后重复这个过程。Game One--中间选民定理的例子博弈者:2个Players需要选择自己的政治立场。策略选项:一共有1-10种政治立场,每种都有10%的选民支持。收益:候选者…

喜忧参半:我国蜂窝物联网全球占比超过75%

来源: C114通信网随着连接技术的不断创新,我们将迎来真正万物互联的智能世界。而在物联网产业链条中,通信运营商一直扮演着至关重要的角色。知名物联网市场研究机构IoT Analytics的数据显示:蜂窝物联网连接数方面,中国电信、中国联…

Leetcode--84. 柱状图中最大的矩形

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积。 以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。 图…

2021机器智能研究方向

来源:人工智能和大数据 在机器智能向更大的深度神经网络发展的过程中,训练效率将成为Graphcore Research在2021年的重点工作。大型、过参数化模型的训练不断展现出改进的训练和泛化性能。事实上,在许多领域,较大的模型样本效率更高…

sqlalchemy外键和relationship查询

前面的文章中讲解了外键的基础知识和操作,上一篇文章讲解了sqlalchemy的基本操作。前面两篇文章都是作为铺垫,为下面的文章打好基础。记得初一时第一次期中考试时考的不好,老爸安慰我说:“学习是一个循序渐进的过程”,…

加大基础研究投入 给科技创新注入“强心剂”

来源:科技日报进一步加大政府科技投入力度,引导社会各界对基础研究的投入与布局,健全鼓励支持基础研究、原始创新的体制机制,探索多元化财政科技投入方式,完善鼓励研发投入的政策体系,提升科技经费投入的有…

Gym - 100989J -(DFS)

题目链接:http://codeforces.com/gym/100989/problem/J J. Objects Panel (A)time limit per test1.0 smemory limit per test256 MBinputstandard inputoutputstandard outputRaihan is helping Maram and Master Hasan in the design of their graduation project…

艰难2020:人工智能的应用是否已停滞不前?

作者:Gary Grossman译者:Sambodhi策划:刘燕今年,每一个季度都是疯狂的一年,人工智能的发展同样如此。总的来说,这一年人工智能的发展喜忧参半,其中有显著的进展,也有对技术滥用的新发…

浅谈WM算法

1. WM(Wu-Manber)算法的简单理解:(1)WM算法需要的参数:∑:字母集c: 字母集数目m:模式串集合中,字符串长度最小的模式串的长度B:字符块长度&#…

AI研习丨专题:因果推断与因果性学习研究进展

来源:《中国人工智能学会通讯》2020年 第10卷 第5期 机器学习及其应用专题0 引言因果关系一直是人类认识世界的基本方式和现代科学的基石。爱因斯坦就曾指出,西方科学的发展是以希腊哲学家发明形式逻辑体系,以及通过系统的实验发现有可能找…

传感器的未来: 10年后我们将会生活在一个极端透明的世界

来源:大数据文摘作者:彼得戴曼迪斯2014年,在芬兰的一个传染病实验室里,卫生研究员佩特里拉特拉(Petteri Lahtela)发现了一件奇怪的事情,他突然意识到他所研究的很多问题的条件都存在着重叠。例如…

企业计算机服务器中了babyk勒索病毒怎么办,babyk勒索病毒解密数据恢复

在数字化的今天,网络安全威胁不断增加,给企业的生产生活带来了严重影响,使得企业不得不重视数据安全问题。近日,云天数据恢复中心接到企业求助,企业的计算机服务器中了babyk勒索病毒,导致企业所有计算机系统…

java yied的用法,Java多线程的wait(),notify(),notifyAll()、sleep()和yield()方法使用详解,...

Java多线程的wait(),notify(),notifyAll()、sleep()和yield()方法使用详解,Java多线程中的wait(),notify(),notifyAll()、sleep()和yield()方法我们先从一个案例开始:static public class WaitingTest {//s…

海马体启发的记忆模型

来源:混沌巡洋舰 记忆是人类智能的关键,我们因为记忆可以把过去和当下整合成为一体, 并且可以预测未来。记忆不仅是一个信息承载的工具, 更是世界模型的本体, 它无时无刻不在刻画未来, 也被当下影响&#…