DeepMind最新研究:AI击败了人类,设计了更好的经济机制

2692595250e993c771a9769f6d5294ac.jpeg

来源: 学术头条

“人类面临的许多问题并不仅仅是技术问题,还需要我们为了更大的利益在社会和经济中进行协调。”“要想人工智能技术能够提供帮助,它需要直接学习人类的价值观。” ——DeepMind 研究科学家 Raphael Koster

人工智能(AI),能否推动人类社会进入真正的智能化时代?

尽管经过 60 多年的发展,人工智能行业已经取得了突破性的进展,且被广泛应用在经济社会的方方面面,但构建与人类价值观一致的人工智能系统,仍然是一个尚未解决的问题。

如今,一项来自英国人工智能公司 DeepMind 的最新研究,或许能为人工智能行业从业者解决这一问题提供一个全新的思路。

据介绍,DeepMind 的人工智能系统在一个 4 人在线经济游戏中,通过向 4000 多人学习以及在计算机模拟中学习,不仅学会了制定如何重新分配公共资金的政策,而且表现十分优异,战胜了其他人类玩家。

该游戏涉及玩家决定是保留一笔货币捐赠,还是与其他人分享,以实现集体利益。

相关研究论文以“Human-centred mechanism design with Democratic AI”为题,于 7 月 5 日在线发表在权威科学期刊 Nature Human Behaviour 上。

9b91f11d1fbce95ab0809fb3c81b5570.jpeg(来源:Nature Human Behaviour

英国约克大学助理教授安妮特·齐默尔曼(Annette Zimmermann)警告说,“不要把民主狭隘地等同为寻找最受欢迎政策的“偏好满足”(preference satisfaction)系统。”

她还表示,民主不仅仅是让你最喜欢的政策得到最好的执行——它是创造一个过程,公民可以在这个过程中平等地相互接触和商议(事情)。

7fa8bee34207dbbad18cc2c6a691188e.jpeg

由 AI 设计经济机制

人工智能研究的最终目标是构建有益于人类的技术——从帮助我们完成日常任务到解决社会面临的重大生存挑战。

如今,机器学习系统已经解决了生物医学的主要问题,并帮助人类应对环境挑战。然而,人工智能在帮助人类设计公平和繁荣社会方面的应用还有待开发。

在经济学和博弈论中,被称为机制设计的领域研究如何最优地控制财富、信息或权力在受到激励的行为者之间的流动,以实现预期目标。

在此工作中,研究团队试图证明:深度强化学习(RL)代理可以用来设计一种经济机制,这种经济机制能够得到被激励人群的偏好。

在这个游戏中,玩家一开始拥有不同数量的钱,必须决定贡献多少来帮助更好地发展一个公共基金池,并最终获得一部分作为回报,且会涉及反复决定是保留一笔货币捐赠,还是与其他玩家分享,以获得潜在的集体利益。

研究团队训练了一个深度强化学习代理,来设计一个重新分配机制,即在财富平等和不平等的情况下将资金分享给玩家。

共享收益通过两种不同的再分配机制返还给玩家,一种是由该人工智能系统设计的,另一种是由人类设计的。

df2b3ca4835cbf2e3456df67f1daf4be.jpeg图|游戏设计(来源:Nature Human Behaviour

在由人工智能制定的政策中,系统会根据每个玩家贡献的启动资金数量重新分配公共资金,以此来减少玩家之间的财富差距。

相比于“平等主义”方法(不管每个玩家贡献多少都平均分配资金)和“自由主义”方法(根据每个玩家的贡献占公共资金的比例分配资金),该政策从人类玩家手上赢得了更多的选票。

同时,该政策也纠正了最初的财富失衡,制止了玩家的“搭便车”行为,除非玩家贡献出大约一半的启动资金,否则他们几乎不会得到任何回报。

但是,研究团队也警告道,他们的研究成果并不代表“人工智能治理”(AI government)的配方(recipe),他们也不打算为政策制定专门构建一些由人工智能驱动的工具。

02addaf17b3da45b438a30e84c511026.jpeg

值得信任吗?

研究结果表明,通过在激励相容的经济游戏中设计一种人类明显更喜欢的机制,人工智能系统可以被训练来满足民主目标。

在此次工作中,研究团队使用人工智能技术来从头学习重新分配方案,这种方法减轻了人工智能研究人员——他们自己可能有偏见或不代表更广泛的人群——选择一个领域特定目标进行优化的负担。

这一研究工作也提出了几个问题,其中一些在理论上具有挑战性。例如,有人可能会问,把强调民主目标作为一种价值校准的方法是否是个好主意。该人工智能系统可能继承了其他民主方法的一种倾向,即“以牺牲少数人为代价赋予多数人权利”。考虑到人们迫切担心人工智能的部署方式可能会加剧社会中现有的偏见、歧视或不公平,这一点尤为重要。

b4859122c27df23af2c07eefe80c45cc.jpeg(来源:Pixabay)

另一个悬而未决的问题是,人们是否会信任人工智能系统设计的机制。如果事先知道裁判的身份,玩家可能会更喜欢人类裁判而不是人工智能代理裁判。然而,当人们认为任务对人类来说过于复杂时,他们页往往会选择信任人工智能系统。

此外,如果是口头向玩家解释这些机制,而不是通过经验学习,他们的反应是否会有所不同。大量文献表明,当机制是“根据描述”而不是“根据经验”时,人们的行为有时会有所不同,特别是对于冒险的选择。然而,人工智能设计的机制可能并不总是可以用语言表达的,在这种情况下观察到的行为似乎可能完全取决于研究团队所采用的描述的选择。

在论文的最后,研究团队还强调,这一研究结果并表示他们支持某种形式的“人工智能治理”,即自主代理在没有人工干预的情况下做出政策决定。

他们希望,该方法的进一步开发将提供有助于以真正符合人类的方式解决现实世界问题的工具。

参考链接:
https://www.nature.com/articles/s41562-022-01383-x
https://www.deepmind.com/publications/human-centred-mechanism-design-with-democratic-ai
https://www.newscientist.com/article/2327107-deepminds-ai-develops-popular-policy-for-distributing-public-money/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

96e2dbf4befae167ac4dfcf60ccae143.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481857.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

字节跳动 AI Lab 总监李航:语言模型的过去、现在和未来

来源:AI科技评论作者:李航编译:李梅、黄楠编辑:陈彩娴从俄国数学家 Andrey Markov (安德烈马尔可夫)提出著名的「马尔科夫链」以来,语言建模的研究已经有了 100 多年的历史。近年来,…

基于军事知识图谱的作战预案语义匹配方法研究

关注微信公众号:人工智能技术与咨询。了解更多咨询 基于军事知识图谱的作战预案语义匹配方法研究 人工智能技术与咨询 前天 本文来自《指挥与控制学报》 ,作者梁汝鹏等 摘 要 提出了一种智能化的预案语义匹配方法,基于军事知识图谱,建立知识图谱与作…

我们的宇宙,在某种意义上,是最好的一个

来源:《那些难以企及的人物:数学天空的群星闪耀》、思庐哲学(siluphilosophy)作者:蔡天新原题:莱布尼茨诞辰|“十七世纪的亚里士多德”在巴黎逗留时期,莱布尼茨除了潜心数学王国之外…

【创新应用】AI搞财富分配比人更公平?DeepMind的多人博弈游戏研究

来源:智能研究院DeepMind这次不下棋,也不搞电子游戏,而是研究了一把多人博弈游戏。最新开发的“Democratic AI”——通过训练学习人类价值观,进而能根据每个人的贡献公平地分配资源。为了论证这一概念,DeepMind设计了一…

重磅!2022年度中国高校技术发明贡献50强出炉!

来源:青塔 2022年度中国高校技术发明贡献50强,重磅出炉!打破国际垄断,攻克世界级技术难题,高校,是“圆科技强国梦”的重要学术力量。斩获国家科学技术发明奖的高校,或填补行业领域空白&#xff…

Celus 使用 AI 实现电路板设计的自动化

来源:ScienceAI编辑:白菜叶几乎您想到的每一个电子装置都至少包含一个印刷电路板 (PCB),它用于容纳和连接各种组件,使设备能够作为一个整体发挥作用。虽然电路板对最终用户来说大多是不可见的,但它们是他们所居住的世界…

“上帝粒子”发现10周年,让我们回忆一下这位给它起名的物理巨人

来源:混沌巡洋舰2012年7月4日,欧洲核子研究中心(CERN)宣布发现了“上帝粒子”(希格斯玻色子)。希格斯玻色子是粒子物理学标准模型预言的一种玻色子,正是它的存在,基本粒子才拥有了质…

频谱知识图谱:面向未来频谱管理的智能引擎人工智能技术与咨询

频谱知识图谱:面向未来频谱管理的智能引擎 人工智能技术与咨询 4天前 本文来自《通信学报》,作者孙佳琛等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 1 引言 频谱管理是指综合运用行政、技术和工程等手段对电磁频谱…

强化学习的起源:从老鼠走迷宫到AlphaGo战胜人类

来源:新智元编辑:如願【新智元导读】本文介绍了基于模型的和无模型的两种强化学习。用人类和动物的学习方式进行举例,讲述了两种强化学习类型的起源、区别以及结合。谈到强化学习,很多研究人员的肾上腺素便不受控制地飙升&#xf…

Science | 破解60年难题!中科大张智/安医大陶文娟等发现声音能镇痛的潜在原因...

来源:FUTURE | 远见 选编:闵青云声音——包括音乐和噪音——可以减轻人类的疼痛,但潜在的神经机制仍然未知。 近日,中国科学技术大学张智、安徽医科大学陶文娟及国家卫生研究院 (NIH)Liu Yuanyuan共同通讯在Science发表题为「Soun…

基础研究的高风险导向型范式,助力“从0到1”的创新

来源:深究科学作者:吴家睿,中科院生化与细胞研究所原文首发《生命科学》2022年第34卷第6期以自由探索为主的基础研究和针对实际目标的应用研究是人们熟悉的两种科研活动形态。然而,美国国防部高级研究计划局(DARPA&…

基于元学习的红外弱小点状目标跟踪算法

基于元学习的红外弱小点状目标跟踪算法 人工智能技术与咨询 昨天 本文来自《激光技术》,作者热孜亚艾沙等 引言 红外点状目标的跟踪是红外搜索和跟踪(infrared search and track, IRST)系统中的关键技术之一[1],在红外目标跟踪、遥感制图等多个方面占…

鄂维南:从数学角度,理解机器学习的“黑魔法”,并应用于更广泛的科学问题...

来源:科学智能AISI北京时间2022年7月8日晚上22:30,鄂维南院士在2022年的国际数学家大会上作一小时大会报告(plenary talk)。今天我们带来鄂老师演讲内容的分享。鄂老师首先分享了他对机器学习数学本质的理解(函数逼近、概率分布的逼近与采样、…

2 小时写了篇论文,凭什么 GPT-3 不配拥有姓名?

来源 :CSDN(ID:CSDNnews)整理:郑丽媛自 OpenAI 推出具有 1750 亿参数的 AI 文本生成模型 GPT-3 后,这两年它便开始在各种不同的领域内“大显身手”:写小说、编剧本、敲代码、与人聊天、设计网页…

基于小样本学习的图像分类技术综述

基于小样本学习的图像分类技术综述 人工智能技术与咨询 昨天 本文来自《自动化学报》,作者李颖等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 图像分类是一个经典的研究课题, 典型的图像分类算法涉及两个问题, 一是如何对图像特征…

Nature子刊 | 像婴儿一样学习,DeepMind新模型28小时学会物理世界规则

来源:机器之心编辑:小舟、陈萍Deepmind 旨在建立一个能够学习直观物理学的模型,并剖析模型实现这种能力的原因。从 AlphaFold 到数学推理,DeepMind 一直在尝试将 AI 和基础科学结合。现在,DeepMind 又创建了一个可以学…

双向特征融合的数据自适应SAR图像舰船目标检测模型

双向特征融合的数据自适应SAR图像舰船目标检测模型 人工智能技术与咨询 昨天 本文来自《中国图象图形学报》,作者张筱晗等 摘要: 利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监…

采用优化卷积神经网络的红外目标识别系统

采用优化卷积神经网络的红外目标识别系统 人工智能技术与咨询 前天 本文来自《光学精密工程》,作者刘可佳等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 摘要 针对视频数据利用低效和光测设备目标识别能力较弱的问题&#xff0c…

基于知识图谱的直升机飞行指挥模型研究

基于知识图谱的直升机飞行指挥模型研究 人工智能技术与咨询 昨天 本文来自《无线电工程》,作者齐小谦 关注微信公众号:人工智能技术与咨询。了解更多咨询! 摘 要: 针对当前直升机飞行指挥效率低下、数据关系复杂和智能化层次低…

基于深度强化学习的智能船舶航迹跟踪控制

基于深度强化学习的智能船舶航迹跟踪控制 人工智能技术与咨询 昨天 本文来自《中国舰船研究》 ,作者祝亢等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 0. 引 言 目前,国内外对运载工具的研究正朝着智能化、无人化…