Nature子刊 | 像婴儿一样学习,DeepMind新模型28小时学会物理世界规则

07175428f0aaef0c630cb15212045c2b.jpeg

来源:机器之心

编辑:小舟、陈萍

Deepmind 旨在建立一个能够学习直观物理学的模型,并剖析模型实现这种能力的原因。

从 AlphaFold 到数学推理,DeepMind 一直在尝试将 AI 和基础科学结合。现在,DeepMind 又创建了一个可以学习简单物理规则的新模型。

发育心理学家测试分析了婴儿如何通过目光来跟随物体的运动。例如,当播放视频中有一个球突然消失时,孩子们会表现出惊讶。

DeepMind 的计算机科学家 Luis Piloto 及其同事希望为人工智能 (AI) 开发类似的测试。该团队使用立方体和球等简单物体的动画视频训练了一个神经网络,该模型通过从大量数据中发现模式来学习。研究论文于 7 月 11 日发表在《Nature Human Behaviour》上。

0058ef880de8bab1d3f124e04ccefa83.jpeg

  • 论文地址:https://www.nature.com/articles/s41562-022-01394-8

  • 数据集地址:https://github.com/deepmind/physical_concepts

该模型通过自动编码和跟踪对象进行物理学习,因此命名为 PLATO (Physics Learning through Auto-encoding and Tracking Objects)。PLATO 接收来自视频的原始图像和突出显示场景中每个对象目标的图像版本。PLATO 旨在开发对象物理特性的内部表征,例如它们的位置和速度。

该系统接受了大约 30 个小时的视频训练,这些视频展示了简单的运动机制(例如一个球从斜坡上滚下来),并开发了预测这些对象在不同情况下行为的能力。特别地,PLATO 学习了连续性和稳固性,保证目标的轨迹是不间断的,物体形状是持久的。随着视频的播放,模型的预测会变得更加准确。

当播放带有「不可能」事件的视频时,例如一个物体突然消失,PLATO 可以度量视频和它自己的预测之间的差异,从而提供一种「惊讶」的衡量标准。

Piloto 说:「PLATO 并非设计为婴儿行为模型,但它可以测试关于人类婴儿如何学习的假设。我们希望认知科学家最终可以使用它来模拟婴儿的行为。」

英属哥伦比亚大学的计算机科学家 Jeff Clune 表示,「将 AI 与人类婴儿的学习方式进行比较是一个重要的研究方向。PLATO 的研究者手工设计了许多赋予人工智能模型优势的先验知识。」Clune 等研究人员正试图让程序开发自己的算法来理解物理世界。

运用发展心理学的知识

为了在 AI 系统中追求更丰富的物理直觉,DeepMind 的研究团队从发展心理学中汲取灵感。研究团队构建了一个深度学习系统,该系统整合了发展心理学的核心见解,即物理学是在离散对象及其相互作用的层面上理解的。

直觉物理学的核心依赖于一组离散的概念(例如,对象的持久性、稳固性、连续性等),可以区分、操作和单独探测。传统的 AI 学习直观物理的标准方法通过视频或状态预测指标、二元结果预测、问答性能或强化学习任务来学习物理世界。这些方法似乎需要理解直觉物理学的某些方面,但并没有明确地操作或战略性地探索一组明确的概念。

另一方面,发展心理学认为一个物理概念对应于一组未来如何展开的期望。例如人们期望物体不会神奇地从一个地方突然传送到另一个地方,而是通过时间和空间追踪连续的路径,这就有了连续性的概念。因此,有一种测量特定物理概念知识的方法:违反期望 (VoE) 范式。

使用 VoE 范式探索特定概念时,研究人员向婴儿展示视觉上相似的阵列(称为探测(probe)),这些阵列与物理概念一致(物理上可能)或不一致(物理上不可能)。在这个范式中,「惊讶」是通过凝视持续时间来衡量的。

4ebb2ad87e6fb5745dc5abf53fb7e9ba.jpeg

方法介绍

首先,DeepMind 提出了一个非常丰富的视频语料库 ——Physical Concepts 数据集。该数据集包含 VoE 探测视频,针对五个重要的物理概念,这些概念在发展心理学中被视为核心要素,包括连续性、目标持久性和稳固性。第四种是不可变性,用于捕捉某些目标属性 (例如形状) 不会改变的概念;第五个概念是方向惯性,涉及到运动物体在与惯性原理一致的方向上发生变化的期望。

最重要的是 Physical Concepts 数据集还包括一个单独的视频语料库作为训练数据。这些视频展示了各种程序生成的物理事件。

9a18bdd12c9bbe2fe2ecaaee9511a6d6.jpeg

图 2:用于训练模型的视频数据集示例

PLATO 模型架构

Deepmind 旨在建立一个能够学习直观物理学的模型,并剖析模型实现这种能力的原因。PLATO 模型中实例化了 AI 领域一些先进的系统。

首先是目标个性化过程。目标个性化过程将视觉的连续感知输入切割成一组离散的实体,其中每个实体都有一组对应的属性。在 PLATO 中,每个分段的视频帧通过感知模块分解为一组目标代码(图 3a-c),从而实现从视觉输入到个体目标的映射。PLATO 没有学习分割场景,但给定一个分割目标,其学习一个压缩表示。

其次,目标跟踪(或目标索引)为每个目标分配一个索引,从而实现跨时间目标感知和动态属性计算之间的对应关系(图 3b,c)。在 PLATO 中,目标代码在目标缓冲区中的帧上累积和跟踪(图 3d)。

最后一个组件是这些被跟踪目标的关系处理,这一过程受到发展心理学中提出的「物理推理系统」的启发,该系统可以动态地处理物体的表征,产生新的表征,这些表征会受到物体与其他物体之间关系和互动的影响。

PLATO 学习目标内存和目标感知历史之间的交互作用(图 3d),以生成针对下一个目标的预测视频帧并更新基于目标的内存。

2678e7d446d5e3e517b86399d3fe3032.jpeg

图 3:PLATO 包括两个组件:感知模块(左)和动态预测(右)

实验结果

在测试时,当使用五种不同的随机种子进行训练时,PLATO 在所有五个探测类别中都显示出强大的 VoE 效果。

f812c81f3af3d02f92ba0513c526a2ec.jpeg

图 5:PLATO 在 Physical Concepts 数据集的探测中显示出稳健的效果。

Physical Concepts 数据集中的训练语料库共包含 300000 个视频。用保守计算方法,大约需要 52 天的持续视觉体验。从 AI 和开发的角度来看,这存在一个问题,即在测试中产生 VoE 效果实际上需要多少训练数据。为了评估这一点,Deepmind 在大小逐渐减小的数据集上训练了三个 PLATO 动态预测器的随机种子(图 6),计算了所有五个探测类别的 VoE 效应的总平均值。

在仅对 50000 个示例进行训练后,研究结果表明,在使用少至 50000 个示例(相当于 28 小时的视觉体验)进行训练后,Deepmind 的模型中出现了稳健的 VoE 效果。

3f57177f433f50cb4a1d4d7fe1d56dfe.jpeg

图 6:PLATO 只需短短 28 小时的视觉体验就能显示出强大的效果。

泛化测试:Deepmind 采用 ADEPT 数据集,该数据集旨在探索直观的物理知识。如图 7 所示,PLATO 对所有三个探测类别都显示出清晰的 VoE 效果。

73453599e33539c75da0e806ba819324.jpeg

图 7:PLATO 展示了在不可见目标和动态上的鲁棒效果,而无需任何重新训练。

更多内容,请查看原论文。

参考内容:

https://www.nature.com/articles/d41586-022-01921-7

https://www.deepmind.com/publications/learning-intuitive-physics-through-objects

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

3e77c8d9178be9a80770ad7d544a676d.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481840.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

双向特征融合的数据自适应SAR图像舰船目标检测模型

双向特征融合的数据自适应SAR图像舰船目标检测模型 人工智能技术与咨询 昨天 本文来自《中国图象图形学报》,作者张筱晗等 摘要: 利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监…

采用优化卷积神经网络的红外目标识别系统

采用优化卷积神经网络的红外目标识别系统 人工智能技术与咨询 前天 本文来自《光学精密工程》,作者刘可佳等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 摘要 针对视频数据利用低效和光测设备目标识别能力较弱的问题&#xff0c…

基于知识图谱的直升机飞行指挥模型研究

基于知识图谱的直升机飞行指挥模型研究 人工智能技术与咨询 昨天 本文来自《无线电工程》,作者齐小谦 关注微信公众号:人工智能技术与咨询。了解更多咨询! 摘 要: 针对当前直升机飞行指挥效率低下、数据关系复杂和智能化层次低…

基于深度强化学习的智能船舶航迹跟踪控制

基于深度强化学习的智能船舶航迹跟踪控制 人工智能技术与咨询 昨天 本文来自《中国舰船研究》 ,作者祝亢等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 0. 引 言 目前,国内外对运载工具的研究正朝着智能化、无人化…

基于深度强化学习的区域化视觉导航方法

基于深度强化学习的区域化视觉导航方法 人工智能技术与咨询 本文来自《上海交通大学学报》,作者李鹏等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 在环境中高效导航是智能行为的基础,也是机器人控制领域研究的热点之一.实现自主…

知识图谱的最新进展、关键技术和挑战

知识图谱的最新进展、关键技术和挑战 人工智能技术与咨询 本文来自《 工程科学学报 》,作者马忠贵等 随着知识的不断积累和科学的飞速发展,人类社会进行了多次改变社会结构的重大生产力革命。最近的生产力革命正是由Web技术发展引发的信息革命。伴随…

NASA发布史上最深的宇宙全彩照!韦伯如何回传150万公里外的太空数据?

来源:大数据文摘作者:Mickey2022年7月11日凌晨,乔拜登总统、副总统卡玛拉哈里斯和美国国家航空航天局局长比尔纳尔逊公布了耗资100亿美元的詹姆斯韦伯太空望远镜的首秀!这是詹姆斯韦伯太空望远镜(JWST)发布了第一批图像。本张图片…

基于改进YOLO v3网络的夜间环境柑橘识别方法

基于改进YOLO v3网络的夜间环境柑橘识别方法 人工智能技术与咨询 本文来自《农业机械学报》,作者熊俊涛等 关注微信公众号:人工智能技术与咨询。了解更多咨询!

Nature走出重要的一步:研究代谢个体间差异的比较系统

来源:生物通一组线虫生物学家利用来自世界不同地区的四种不相关的秀丽隐杆线虫(C. elegans),开发了一个模型系统来研究新陈代谢的个体差异。这一进步代表着向“个性化”或“精准”医学迈出了潜在的重要一步。“精准”医学是一门相对较新的学科&#xff0…

工业和信息化部办公厅关于公布2021年产业技术基础公共服务平台复核结果的通知

工业和信息化部办公厅关于公布2021年产业技术基础公共服务平台复核结果的通知 人工智能技术与咨询 工业和信息化部办公厅关于公布2021年产业技术基础公共服务平台复核结果的通知 工信厅科函〔2021〕266号 北京市、上海市、广东省、吉林省、安徽省、河北省工业和信息化主管部…

英伟达用AI设计GPU算术电路,面积比最先进EDA减少25%,速度更快、更加高效

来源:机器之心随着摩尔定律的放缓,在相同的技术工艺节点上开发能够提升芯片性能的其他技术变得越来越重要。在这项研究中,英伟达使用深度强化学习方法设计尺寸更小、速度更快和更加高效的算术电路,从而为芯片提供更高的性能。大量…

国家自然科学基金项目经费怎么用有了新规定

国家自然科学基金项目经费怎么用有了新规定 人工智能技术与咨询 来源:光明日报 为破除科研经费在申请、管理、使用方面存在的“难点”“堵点”和“痛点”,今年8月,《国务院办公厅关于改革完善中央财政科研经费管理的若干意见》正式印发。作…

无人系统群体智能及其研究进展

来源:无人机作者:周兴社,武文亮(西北工业大学 计算机学院,陕西 西安 710129)摘 要:群体智能是人工智能的重要发展方向之一.无人系统群体智能作为人工群体智能的主要形态之一,在许多军用和民用领域都具有广阔…

工信部推动第二批“5G+工业互联网”实践的通知

工信部推动第二批“5G工业互联网”实践的通知 人工智能技术与咨询 工业和信息化部办公厅关于印发第二批“5G工业互联网”十个典型应用场景和五个重点行业实践的通知 工信厅信管函〔2021〕279号 各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门&…

AI进军学术界:自己写稿自己发,提醒人类“密切监控”自己

来源:网易新闻(网络一线牵)采写/编译:南都见习记者杨博雯“我只是希望我没有打开潘多拉的盒子。”当哥德堡大学的研究员Almira Osmanovic Thunstrm完成研究时,反而这样表示。她研究的内容是让AI自己完成一篇关于自身的…

基于句式元学习的Twitter分类

关注微信公众号:人工智能技术与咨询。了解更多咨询! 基于句式元学习的Twitter分类 人工智能技术与咨询 本文来自《北京大学学报(自然科学版)》,作者闫雷鸣等 摘要 针对多类别的社交媒体短文本分类准确率较低问题, 提出一种学习多种句式的…

OpenAI 研究员:数据不足时,如何实现监督学习

来源:AI科技评论作者:Lilian Weng编译:丛末编辑:陈彩娴现实应用中,数据易得,而有标签的数据少有。一般而言,当监督学习任务面临标签数据不足问题时,可以考虑以下四种解决办法&#x…

知识图谱及其在安全领域的应用

知识图谱及其在安全领域的应用 人工智能技术与咨询 关注微信公众号:人工智能技术与咨询。了解更多咨询! 本文作者作者:Toky,由 Seebug Paper 发布 1. 知识图谱是什么? 1.1 知识(Knowledge&#xff09…

深度残差网络的无人机多目标识别

深度残差网络的无人机多目标识别 人工智能技术与咨询 来源:《图学学报》。作者翟进有等 摘要:传统目标识别算法中,经典的区域建议网络(RPN)在提取目标候选区域时计算量大,时间复杂度较高,因此提出一种级联区域建议…

让 AI “读懂”人类价值观!朱松纯团队工作登上 Science 头条

来源&#xff1a;AI科技评论作者&#xff1a;朱松纯团队今日&#xff08;7月14日&#xff09;&#xff0c;国际顶级学术期刊<Science Robotics >发表了朱松纯团队&#xff08;UCLA袁路遥、高晓丰、北京通用人工智能研究院郑子隆、北京大学人工智能研究院朱毅鑫等作者&…