【创新应用】AI搞财富分配比人更公平?DeepMind的多人博弈游戏研究

2b1169366cfc17a452ee399e5eb1b9f4.jpeg

来源:智能研究院

DeepMind这次不下棋,也不搞电子游戏,而是研究了一把多人博弈游戏。

最新开发的“Democratic AI”——通过训练学习人类价值观,进而能根据每个人的贡献公平地分配资源。

为了论证这一概念,DeepMind设计了一个简单的投资游戏,由AI和人类分别担任裁判,让玩家们票选出更喜欢的分配规则,Democratic AI甚至获得了比人类裁判更高的支持率。

AI裁判比人类更受欢迎

当一群人决定集中资金进行投资时,收益应该如何分配是一个必须面对的大问题。

一个简单的策略是在投资者之间平均分配回报,但这很可能是不公平的,因为有些人的贡献比其他人多。

第二个方案是,我们可以根据每个人的初始投资多少进行分配,这听起来很公平,但如果人们一开始的资产水平各不相同呢?

如果两个人贡献了相同的金额,但一个是他们可用资金的一小部分,另一个则贡献了他的全部资产,他们应该获得相同的收益份额吗?

为了应对这一挑战,DeepMind创建了一个简单的多人投资游戏。

731f47de39b32afa789e40cd679270b2.jpeg

游戏涉及4名玩家,共分成10轮。

每个玩家都会被分配初始资金,在每一轮中,玩家可以按自己的意愿做出选择:自己保留,或者将其投资于一个共同的池中。

投资肯定会有回报,但存在一个风险——玩家不知道最终收益将如何分配。

除此之外,他们被告知,前10轮有一名裁判(A)做出分配决策,而后10轮,由不同的裁判(B)接手。

比赛结束时,他们将投票给A或B,来决定自己还想与哪位裁判再来一场游戏。

而这最后一次游戏的收益可以由玩家们自己保留,这将使玩家们更主动地选出自己心中最公正的裁判。

事实上,其中一位裁判是按照预先设定的分配规则执行,另一边是由Democratic AI自行设计。

当我们研究这些玩家的投票时,我们发现AI设计的规则比标准分配规则更受欢迎。

与此同时,DeepMind还请来了一位人类裁判,并给他介绍规则、让他尽量做到公平分配以拉选票,但最终投票结果显示,他还是输给了Democratic AI。

Democratic AI为什么能赢?

在DeepMind最新发表于Nature子刊Nature Human Behaviour的论文中,记录了研究人员对Democratic AI的训练过程。

50783a2671336868c1ab64d61e309698.jpeg

首先,他们让4000多名人类玩家在不同的分配规则下多次参加游戏,并投票选择更喜欢哪种分配方法。

这些数据用于训练AI来模仿游戏中的人类行为,包括玩家投票的方式。

其次,研究人员让这些AI玩家在数千场比赛中相互竞争,而另一个AI系统根据AI玩家的投票方式继续调整再分配规则。

于是,在这个过程结束时,AI已经确定了非常接近公平的再分配规则:

首先,AI选择根据相对贡献而不是绝对贡献的比例进行分配。这意味着,在重新分配资金时,AI会考虑每个玩家的初始金额以及他们投资的意愿。

其次,AI系统特别奖励了相对贡献更慷慨的玩家,以此鼓励其他人也这样做。重要的是,人工智能只有通过最大化学习人类投票率才能发现这些规则。

这个方法能推广到现实吗?

虽然DeepMind的游戏测试取得了亮眼的成绩,但要想将这种方法从简单的四人游戏转换为大规模经济体系,仍具有巨大的挑战性,目前还不能确定它在现实世界中会如何发展。

975d1ddd5f7b3e165b9e0904ca49a460.jpeg

其次,研究人员自己发现了几个潜在的问题。

Democratic的一个问题是可能会发展为“多数人的暴政”,这将导致对少数群体的现有歧视或不公平模式持续存在。

AI需要做更多的工作来了解如何通过设计允许所有人的声音都能被听到。

另外,研究人员还提出了人们对AI的信任问题:

人们是否会信任由AI设计的机制来代替人类?如果人们知道裁判的身份,会不会影响最终的投票结果?

如果要将Democratic AI设计的解决方案应用于解决现实世界的困境,这一点至关重要。

参考链接:
[1]https://www.deepmind.com/publications/human-centred-mechanism-design-with-democratic-ai
[2]https://www.nature.com/articles/s41562-022-01383-x
[3]https://singularityhub.com/2022/07/04/deepminds-new-ai-may-be-better-at-distributing-societys-resources-than-humans-are/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

ae40e9bcf4233a428541e016579e7edf.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481853.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重磅!2022年度中国高校技术发明贡献50强出炉!

来源:青塔 2022年度中国高校技术发明贡献50强,重磅出炉!打破国际垄断,攻克世界级技术难题,高校,是“圆科技强国梦”的重要学术力量。斩获国家科学技术发明奖的高校,或填补行业领域空白&#xff…

Celus 使用 AI 实现电路板设计的自动化

来源:ScienceAI编辑:白菜叶几乎您想到的每一个电子装置都至少包含一个印刷电路板 (PCB),它用于容纳和连接各种组件,使设备能够作为一个整体发挥作用。虽然电路板对最终用户来说大多是不可见的,但它们是他们所居住的世界…

“上帝粒子”发现10周年,让我们回忆一下这位给它起名的物理巨人

来源:混沌巡洋舰2012年7月4日,欧洲核子研究中心(CERN)宣布发现了“上帝粒子”(希格斯玻色子)。希格斯玻色子是粒子物理学标准模型预言的一种玻色子,正是它的存在,基本粒子才拥有了质…

频谱知识图谱:面向未来频谱管理的智能引擎人工智能技术与咨询

频谱知识图谱:面向未来频谱管理的智能引擎 人工智能技术与咨询 4天前 本文来自《通信学报》,作者孙佳琛等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 1 引言 频谱管理是指综合运用行政、技术和工程等手段对电磁频谱…

强化学习的起源:从老鼠走迷宫到AlphaGo战胜人类

来源:新智元编辑:如願【新智元导读】本文介绍了基于模型的和无模型的两种强化学习。用人类和动物的学习方式进行举例,讲述了两种强化学习类型的起源、区别以及结合。谈到强化学习,很多研究人员的肾上腺素便不受控制地飙升&#xf…

Science | 破解60年难题!中科大张智/安医大陶文娟等发现声音能镇痛的潜在原因...

来源:FUTURE | 远见 选编:闵青云声音——包括音乐和噪音——可以减轻人类的疼痛,但潜在的神经机制仍然未知。 近日,中国科学技术大学张智、安徽医科大学陶文娟及国家卫生研究院 (NIH)Liu Yuanyuan共同通讯在Science发表题为「Soun…

基础研究的高风险导向型范式,助力“从0到1”的创新

来源:深究科学作者:吴家睿,中科院生化与细胞研究所原文首发《生命科学》2022年第34卷第6期以自由探索为主的基础研究和针对实际目标的应用研究是人们熟悉的两种科研活动形态。然而,美国国防部高级研究计划局(DARPA&…

基于元学习的红外弱小点状目标跟踪算法

基于元学习的红外弱小点状目标跟踪算法 人工智能技术与咨询 昨天 本文来自《激光技术》,作者热孜亚艾沙等 引言 红外点状目标的跟踪是红外搜索和跟踪(infrared search and track, IRST)系统中的关键技术之一[1],在红外目标跟踪、遥感制图等多个方面占…

鄂维南:从数学角度,理解机器学习的“黑魔法”,并应用于更广泛的科学问题...

来源:科学智能AISI北京时间2022年7月8日晚上22:30,鄂维南院士在2022年的国际数学家大会上作一小时大会报告(plenary talk)。今天我们带来鄂老师演讲内容的分享。鄂老师首先分享了他对机器学习数学本质的理解(函数逼近、概率分布的逼近与采样、…

2 小时写了篇论文,凭什么 GPT-3 不配拥有姓名?

来源 :CSDN(ID:CSDNnews)整理:郑丽媛自 OpenAI 推出具有 1750 亿参数的 AI 文本生成模型 GPT-3 后,这两年它便开始在各种不同的领域内“大显身手”:写小说、编剧本、敲代码、与人聊天、设计网页…

基于小样本学习的图像分类技术综述

基于小样本学习的图像分类技术综述 人工智能技术与咨询 昨天 本文来自《自动化学报》,作者李颖等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 图像分类是一个经典的研究课题, 典型的图像分类算法涉及两个问题, 一是如何对图像特征…

Nature子刊 | 像婴儿一样学习,DeepMind新模型28小时学会物理世界规则

来源:机器之心编辑:小舟、陈萍Deepmind 旨在建立一个能够学习直观物理学的模型,并剖析模型实现这种能力的原因。从 AlphaFold 到数学推理,DeepMind 一直在尝试将 AI 和基础科学结合。现在,DeepMind 又创建了一个可以学…

双向特征融合的数据自适应SAR图像舰船目标检测模型

双向特征融合的数据自适应SAR图像舰船目标检测模型 人工智能技术与咨询 昨天 本文来自《中国图象图形学报》,作者张筱晗等 摘要: 利用合成孔径雷达(synthetic aperture radar,SAR)图像进行舰船目标检测是实施海洋监…

采用优化卷积神经网络的红外目标识别系统

采用优化卷积神经网络的红外目标识别系统 人工智能技术与咨询 前天 本文来自《光学精密工程》,作者刘可佳等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 摘要 针对视频数据利用低效和光测设备目标识别能力较弱的问题&#xff0c…

基于知识图谱的直升机飞行指挥模型研究

基于知识图谱的直升机飞行指挥模型研究 人工智能技术与咨询 昨天 本文来自《无线电工程》,作者齐小谦 关注微信公众号:人工智能技术与咨询。了解更多咨询! 摘 要: 针对当前直升机飞行指挥效率低下、数据关系复杂和智能化层次低…

基于深度强化学习的智能船舶航迹跟踪控制

基于深度强化学习的智能船舶航迹跟踪控制 人工智能技术与咨询 昨天 本文来自《中国舰船研究》 ,作者祝亢等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 0. 引 言 目前,国内外对运载工具的研究正朝着智能化、无人化…

基于深度强化学习的区域化视觉导航方法

基于深度强化学习的区域化视觉导航方法 人工智能技术与咨询 本文来自《上海交通大学学报》,作者李鹏等 关注微信公众号:人工智能技术与咨询。了解更多咨询! 在环境中高效导航是智能行为的基础,也是机器人控制领域研究的热点之一.实现自主…

知识图谱的最新进展、关键技术和挑战

知识图谱的最新进展、关键技术和挑战 人工智能技术与咨询 本文来自《 工程科学学报 》,作者马忠贵等 随着知识的不断积累和科学的飞速发展,人类社会进行了多次改变社会结构的重大生产力革命。最近的生产力革命正是由Web技术发展引发的信息革命。伴随…

NASA发布史上最深的宇宙全彩照!韦伯如何回传150万公里外的太空数据?

来源:大数据文摘作者:Mickey2022年7月11日凌晨,乔拜登总统、副总统卡玛拉哈里斯和美国国家航空航天局局长比尔纳尔逊公布了耗资100亿美元的詹姆斯韦伯太空望远镜的首秀!这是詹姆斯韦伯太空望远镜(JWST)发布了第一批图像。本张图片…

基于改进YOLO v3网络的夜间环境柑橘识别方法

基于改进YOLO v3网络的夜间环境柑橘识别方法 人工智能技术与咨询 本文来自《农业机械学报》,作者熊俊涛等 关注微信公众号:人工智能技术与咨询。了解更多咨询!