「图神经网络复杂图挖掘」 的研究进展

003586c339366bb0d0b193fec564522e.jpeg

来源:专知

2db9fcfaf236085aa1dd320686a01895.jpeg

图神经网络对非欧式空间数据建立了深度学习框架,相比传统网络表示学习模型,它对图结构能够实施更加深层的信息聚合操作.近年来,图神经网络完成了向复杂图结构的迁移,诞生了一系列基于复杂图的图神经网络模型. 然而,现有综述文章缺乏对复杂图神经网络全面、系统的归纳和总结工作.将复杂图分为异质图、动态图和超图3种类型.将异质图神经网络按照信息聚合方式划分为关系类型感知和元路径感知两大类,在此基础上,分别介绍普通异质图和知识图谱.将动态图神经网络按照处理时序信息的方式划分成基于循环神经网络、基于自编码器以及时空图神经网络三大类.将超图神经网络按照是否将超图展开成成对图划分为展开型和非展开型两大类,进一步按照展开方式将展开型划分成星形展开、团式展开和线形展开3种类型.详细阐述了每种算法的核心思想,比较了不同算法间的优缺点,系统列举了各类复杂图神经网络的关键算法、(交叉)应用领域和常用数据集,并对未来可能的研究方向进行了展望.

http://www.jos.org.cn/jos/article/abstract/6626

1 背景与分类

图(Graph)作为一种数据结构, 能够精确描述事物间复杂的相互作用关系, 因而被广泛应用于诸多科学和 工程领域. 近年来, 由于图结构丰富的信息表达能力, 利用机器学习对图进行分析的研究受到越来越多的关 注. 图表示学习, 便是将图中丰富的结构和语义信息转化成低维稠密的节点表示向量, 以便于后续利用机器 学习方法进行诸如节点分类、链接预测和知识推断等图相关应用. 其中, 图神经网络(graph neural networks, GNNs)由于对图结构建立了深度学习框架, 相比于 DeepWalk[1]、Node2vec[2]等传统网络表示学习方法, 可以同 时利用图结构信息和节点特征信息, 并构造更加复杂深层的神经网络进行表示学习, 因而逐渐成为了近年来 的研究热点. 

为了简化问题和便于建模, 早期的图神经网络大多基于简单图结构, 即静态、同质的成对图结构. Sperduti 等人[3]最早尝试将神经网络应用到有向无环图上. 他们提出了一个将输入的图结构转化成固定维度的节点向 量的编码器, 并将向量输入到一个前馈神经网络中进行分类. 在此基础上, Gori 等人[4]首次提出了图神经网络 的概念, 他们将递归神经网络(recursive neural network, RNN)扩展到了图结构, 进而提出了递归图神经网络. 由此衍生出一系列早期图神经网络研究[5,6]. 然而, 这些早期方法有着很高的计算复杂度, 难以应用到大型图 结构上, 因此并没有得到广泛应用. 

近年来, 得益于卷积神经网络(convolutional neural network, CNN)在计算机视觉领域的成功, 许多方法开 始尝试对图结构定义卷积操作, 并将卷积神经网络迁移到图结构上. 这些方法统称为图卷积神经网络(graph convolutional networks, GCNs). 图卷积神经网络可以按照实施卷积的方式分为谱方法(spectral-based GCNs)和 空间方法(spatial-based GCNs)两种类型. 其中, 谱方法利用卷积定理从谱域定义图卷积. 例如, Xu 等人提出的 GWNN[7]引入小波变换替换傅里叶变换作为基底, 使得模型拥有更好的局部性; Defferrard 等人[8]和 Kipf 等 人[9]通过对卷积核参数化, 实现了局部性并降低了复杂度. 空间方法则致力于从节点所在的空间域出发, 通 过定义聚合操作和连接操作来聚合邻居信息并与中心节点信息合并从而形成新的中心节点表示. 例如, MPNN[10]将图卷积转化成节点间信息的传递, 并提出了空间方法的一个通用框架. 后续的 GraphSage[11]使用 采样选取固定数量的邻居节点, 并给出更加丰富的聚合函数类型.

随着 GNNs 在简单图上的逐渐完善, 人们开始考虑更加复杂多样的图结构. 通过赋予图异质性、时序性 或高阶关联等特征, GNNs 衍生出了一大批基于复杂图结构的变种, 使其拥有更加灵活广泛的应用场景. 本文 按照复杂图的结构类型将这些方法分为异质图、动态图和超图三大类. 图 1 表示了简单图和 3 种复杂图结构

0f2093636e547f902e076e8c5624e088.jpeg

(1) 异质图神经网络 

在真实世界中, 事物之间的相互作用关系构成的图结构往往是异质的, 即节点和边具有多种类型. 例如, 在社交网络中同时存在用户、贴文和评论等类型的节点和用户-贴文、用户-评论和贴文-评论等多种关系. 边 和节点的异质造成了节点间语义关系的多样性, 同时, 边和节点所具有的属性特征也位于不同的特征空间 中, 这些原因导致传统的图神经网络方法无法高效、准确地处理异质图. 为了解决这些问题, Schlichtkrull 等 人[12]最早通过对不同类型的关系定义不同的系数矩阵, 将 GCN[9]成功迁移到了异质图上; Hu 等人[13]在此基 础上, 进一步使用注意力机制计算不同类型关系的重要程度; 后续的 Wang 等人[14]则引入了元路径概念将异 质图转化为同质图, 再进行表示学习. 这些方法被统一归纳为异质图神经网络(heterogeneous graph neural networks, HetGNNs).

(2) 动态图神经网络 

在真实世界中, 图的结构信息和节点特征会随着时间发生变化, 从而导致对图神经网络的输入发生变化. 这类复杂图出现在交通网络、生物网络及知识图谱等各种应用中. 例如, 在时序链接预测问题上, 模型需要根 据网络在 0 到 t 时刻的变化情况预测 t+1 时刻的网络状态; 在交通流预测问题中, 某一位置的交通状态既受到 邻近位置交通流的影响, 也受到这些位置历史交通状态的影响. 因此, 为了在实施图卷积的过程中充分考虑 图结构和节点属性的动态特性, 一些研究者[15,16]开始将循环神经网络与 GNNs 相结合, 或引入自编码器来处 理动态图[17]. 此外, Yan 等人[18]将时序关系转化成时间连接, 提出了时空图神经网络. 这些方法都被归纳为动 态图神经网络(dynamic graph neural networks, DGNNs). 

(3) 超图神经网络 

在现实世界中, 节点间的关系常常不是成对出现的, 而是两个或两个以上节点间共同构成相互作用关系. 例如, 在生物蛋白质交互网络中, 往往是多个蛋白质共同作用行使某项生物功能; 在引文网络中, 往往是多 位作者共同写作了某篇文章. 这些高阶关联形成了一个完整的关系整体, 因而将这种高阶关联使用成对图结 构分别表示将会带来信息损失[19]. 超图(hypergraph)扩展了图的定义, 其中的一条超边(hyperedge)可以包含任 意数量的节点, 因此可以直接储存高阶关联. 近年来, 超图的优势引起了学术界和工业界的广泛关注, 一系列 超图神经网络方法(hypergraph neural network, HyperGNN)被相继提出. 按照是否将超图展开为成对图, 这些 方法可分为展开型[20,21]和非展开型[22,23]超图神经网络. 图 2 展示了本综述对于图神经网络方法的分类框架.

0b57d2a1656a2ce9b7e1886e40ff3d30.jpeg

简单图神经网络 

为了简化问题, 便于建模, 早期图神经网络的研究多基于简单图结构. 这一时期的研究重点集中在如何 将深度学习方法(RNN、CNN、Autoencoder 等)应用到图结构学习当中, 并衍生出不同的发展路线. 基于简单 图的图神经网络是基于复杂图的图神经网络的基础, 为了方便读者理解, 本节我们将简要介绍简单图神经网 络. 我们将其大致分成 3 种类型: 递归图神经网络、卷积图神经网络和图自编码器, 并分别进行阐述.

异质图神经网络 

在真实世界中, 网络中节点和边往往具有多种类型, 而图神经网络的早期研究多基于同质图. 由于异质 图中复杂的语义关系和多样的特征类型, 传统的基于同质图的 GNN 无法直接迁移到这类图结构. 近年来, 随 着图神经网络在同质图上的研究逐渐成熟, 研究者们开始将目光投向异质图, 并提出了一系列方法. 我们按 照节点特征聚合过程中信息的传递方式将这些方法分成关系类型感知和元路径感知这两种类型. 值得注意的 是, 知识图谱由于复杂的语义关系和庞大的规模, 是一种较为特殊的异质图, 而针对它设计的图神经网络方 法大多是与领域问题相结合[57,58], 学习图谱中的语义信息辅助进行推断或辨识. 这也与传统异质图 GNN 方法 进行节点分类或链接预测的任务不同. 因此, 在上述分类的基础上, 我们将分开讨论普通异质图与知识图谱.

3a154ef43aa3dc31a7c9c945bd3333f8.jpeg

动态图神经网络 

真实世界中的图往往具有时序性, 即网络结构和节点属性会随着时间动态变化. 传统图神经网络[9]基于 静态图结构, 因此无法直接用于处理动态图. 为了解决这个问题, 研究者们提出了一系列基于时序图的图神 经网络. 这些方法按照处理时序信息的方式可以分为基于循环神经网络、基于自编码器和时空图神经网络这 3 种类型. 所有动态图 GNN 的分类及描述见前文表 3.

de2c59472aa5ca8d7f077f21f11796ac.jpeg

5b7ac4820790380ee1fae33a4058beb3.jpeg

超图神经网络 

在真实世界中, 事物间的关联关系往往不是成对出现的, 而是两个以上实体间共同构成相互作用关系. 直接使用简单图表示这种非成对关系将会带来信息损失[19]. 超图(hypergraph)扩展了简单图的定义. 在超图 中, 一条超边可以包含任意数量的节点, 因此可以直接储存非成对关系. 超图相比于简单图拥有更加灵活的 边定义方式, 因而对于复杂关系有着更加强大的表达能力. 对于超图的研究最早可以追溯到 20 世纪 80 年代, 这一时期的研究集中在对超图数学性质的推导上[98100]. 更近些时候, 伴随着机器学习方法在图结构上的成 功应用, 越来越多的研究者再次将目光投向超图, 并借助机器学习方法对超图结构进行更深层次的挖掘.

由于超图对于多元关系的建模能力, 早期对于超图的研究主要集中于领域化的问题. 其中, Tan 等人[101] 率先利用超图结构进行了社交网络中用户对齐的研究; Zhu 等人[102]和 Bu 等人[103]则关注超图在推荐系统中的 应用; Fatemi 等人[104]将基于三元组的传统知识图谱结构扩展到了知识超图形式; Hwang 等人[105]和 Klamt 等 人[106]利用超图进行蛋白质或细胞网络的多元关系建模; Huang 等人[107]则将超图应用到计算机视觉上. 超图 的应用将在第 8.3 节详细介绍. 尽管这一时期的研究者已经开始利用超图对各领域中的多元关系进行建模, 但这些方法仍然缺乏对超图表示学习系统的研究, 因此不具有普适性, 很难迁移到其他领域. 直到近年来, 随着图神经网络在简单图结构上的逐渐成熟, 研究者开始将 GNN 迁移到超图结构上, 并提 出了一系列超图神经网络方法. 我们按照是将超图展开成成对图结构还是直接在超图上进行卷积操作, 将这 些方法分成展开型和非展开型两大类.

adff5a4d29792968ac49447423eae9d6.jpeg

97a1f5e3736ad8bc5667c83e926fa6f5.jpeg

应用

复杂图结构相比于简单图减少了诸如同质、静态等限制条件, 使得它们更加贴近实际情况, 进而拥有更 加广泛的应用场景. 基于复杂图的 GNN 在不同领域都有着广泛应用, 例如时空图神经网络在交通流预测[95,96] 和动作识别[18]领域; 异质图神经网络在推荐系统[57,58,71]、视觉问答[65]和金融风控[120]领域; 或者超图神经网络 在视觉[121,122]和化学领域[115]的重要作用. 除此之外, 一些实际应用则对多种复杂图进行了组合使用, 例如时序知识图谱[93]和超图知识图谱[104]的相关研究. 本节我们按照不同类型复杂图及其组合方式阐述复杂图 GNN 的相关应用方向.

数据集

复杂图 GNN 由于其广泛的应用场景拥有众多公开数据集. 我们按照复杂图种类以及具体的应用类型分 别介绍相应的数据集. 由于数据集数量众多, 本文只介绍各应用中被广泛使用的一部分数据集. 对于想获取 更多其他复杂图 GNN 相关数据集的读者, 可以访问 Network Repository (http://networkrepository.com)、 Standford Large Network (https://snap.stanford.edu/data/)、Open Graph Benchmark (https://ogb.stanford.edu)以及 LINQS (https://linqs.soe.ucsc.edu/data)等图数据仓库. 本文介绍的数据集分类及相应描述见表 5.

3b54acb9896054f656df7bebfb9f616d.jpeg

10 展望与总结

10.1 研究方向展望 

GNNs 目前已经完成了向异质图、动态图和超图等复杂图结构的迁移, 并取得了优秀的成果. 但值得注意 的是, 当前大多数 GNN 方法只在小型数据集上进行了简单任务(节点分类、链接预测等)的验证. 在真实应用 场景下, 复杂图的巨大规模和快速更新频率对复杂图 GNN 进一步提出了可扩展、在线性等要求. 本节将讨论 复杂图 GNN 几个潜在的研究方向. 

  • 可扩展性. 当前用于复杂图 GNN 测试的数据集数据量都不大, 大多在 1 万节点以下. 然而和众多深度 学习模型一样, GNNs 在大规模图结构上的训练仍非常具有挑战性. 一方面, 随着 GNN 层数的增加, 模型训练 所需要的时间将呈指数增长; 另一方面, 大规模图的邻接矩阵以及节点特征储存需要消耗大量的内存空间. 近年来, Cluster-GCN[178]等研究考虑到了 GNNs 在大规模图上扩展性的问题, 将训练的图规模提升到百万节点 级别. 但 GNN 在千万级节点以上的知识图谱, 动态图上的训练仍是需要亟待解决的问题.

  • 可解释性. 随着 GNN 在金融风控、疾病诊断等领域的应用, 对 GNN 可解释性的要求也越来越高. 随着可解释性研究在视觉和文本领域的重大进展, 近来一些研究者也开始从模型或梯度等角度给出图神经网络 的可解释性[179]. GNN 模型的可解释性目前的研究还很不完善, 是一个极具潜力的研究方向.

  • 在线性. 在动态网络方面, 在欺诈检测或推荐系统实际应用中, 用户行为网络的高频更新对 GNN 模型 的响应时间提出了要求. 如何在极短时间内重新训练大规模复杂图从而得到新的节点嵌入表示是一个重要的 研究方向. 近年来, 一些研究者开始注意到这个问题. 例如, Wu 等人[93]通过只训练变化的子图结构提出了一 个大型知识图谱的在线学习模型.

  • 迁移性. RNN 被用于动态图 GNN 以及简单图 GNN 向超图 GNN 的迁移已经证明了深度学习模型在不 同图结构上的可迁移性. 一些原本针对某种图类型设计的方法经过简单修改和拓展后很可能用于其他图结 构. 复杂图 GNN 之间的迁移研究是将来重要的研究方向之一.

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

53bd11e3b809cf362efa02f10982ae10.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481463.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

知识复习:nlp算法面试汇总

文章目录2.相似度3.正则化3.1 L13.2 过拟合和欠拟合3.2.1 dropout3.3 欠拟合4. 激活函数4.1 sigmoid5.Bert5.1 Bert原版5.1.2 bert的训练5.2改进5.2.1缺点改进5.2.2任务改进5.3 参数量5.3 transformer5.3.1 多头注意力机制6.搜索6.1pagerank6.2 文本匹配7.神经网络基础7.1Norm7…

光子深度学习:编码到光波上的机器学习模型的组件

编辑 | 萝卜皮由于功率、处理和内存的限制,高级机器学习模型目前无法在智能传感器和无人机等边缘设备上运行。麻省理工学院的研究人员介绍了一种基于跨网络的离域模拟处理的机器学习推理方法。在这种被称为 Netcast 的方法中,基于云的「智能收发器」将重…

【实体对齐·综述】A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs

文章目录模板的简述简述1.Introduction2. preliminatries2.1 literature review2.1.1 knowledge graph embedding2.1.2 Conventional Entity Alignment2.1.3 embedding-based entity alignment2.2 Categorization of Techniques2.2.1 Embedding Module2.2.1.1 关系嵌入2.2.1.2 …

深度学习优化背后包含哪些数学知识?

来源:图灵人工智能深度学习中的优化是一项极度复杂的任务,本文是一份基础指南,旨在从数学的角度深入解读优化器。深度学习中的优化是一项极度复杂的任务,本文是一份基础指南,旨在从数学的角度深入解读优化器。一般而言…

2022 剑桥 AI 全景报告出炉:扩散模型是风口,中国论文数量为美国的 4.5 倍

来源:FUTURE远见选编:FUTURE | 远见 闵青云 文:AI科技评论 近日,剑桥大学的2022年 AI 全景报告(《State of AI Report 》)出炉!报告汇总和聚焦了过去一年里 AI 行业中炙手可热的事件&#xff0c…

实体对齐汇总

文章目录1.综述2.技术论文3.汇总3.1定义定义统一EA3.2 评价指标3.3 数据集3.4 数据预处理技术3.5 索引3.6 对齐3.6.1 按属性相似度/文本相似度做:成对实体对齐3.6.2 协同对齐:考虑不同实体间的关联3.6.2.1 局部实体对齐3.6.2.2 全局实体对齐3.6.3 基于em…

博后出站即任985教授!他致力于寻找人类五感世界的最后一块拼图

来源:iNature两年前,闫致强从底蕴深厚的复旦大学生命科学学院“跳”到尚处于新生期的深圳湾实验室,“蜗居”在一栋商业大楼里,和团队在这里寻找人类感知世界的最后一块拼图。在亚里士多德定义的五种感官中,介导嗅觉、味…

【实体对齐·BootEA】Bootstrapping Entity Alignment with Knowledge Graph Embedding

文章目录0.总结1.动机2. 贡献方法3.应用场景4.其他模型5.数据集6.效果以下的是组内比较BootEA: “Bootstrapping Entity Alignment with Knowledge Graph Embedding”.Zequn Sun, Wei Hu, Qingheng Zhang, Yuzhong Qu. (IJCAI 2018) [ paper][ code]0.总结 BootEA笔记 BootE…

一项人工智能、化学和分子机器人的交叉研究,加速创新和药物发现,并简化复杂的化学过程自动化...

编辑 | 萝卜皮深入了解各类化学物质的最佳一般反应条件,可以加速创新和药物发现,并使复杂的化学过程自动化且易于使用,对生物医药、材料研究具有重要意义。然而,有机反应的一般条件很重要但很少见,以往识别它们的研究通…

【实体对齐·综述】An Experimental Study of State-of-the-Art Entity Alignment Approaches

文章目录0.总结1.Introduction2.Preliminaries2.2 Scope and Related work2.2.1 Entity Linkingentity disambiguation2.2.2 Entity resolutionentity matchingdeduplicationrecord linkage2.2.3 Entity resolution on KGs2.2.4 EA3.general框架3.1 Embedding Learning Module3…

汽车生产线上的工业机器人是如何工作的?

来源:宝石部落 责任编辑:朱光明 审核人:王颖十年来,随着机器人在制造业的普遍应用,我国工业机器人产业规模快速增长。2021年,我国工业机器人产量达36.6万台,比2015年增长了10倍,市场…

【实体对齐·HGCN】Jointly Learning Entity and Relation Representations for Entity Alignment

文章目录1.动机2.输入输出3.相关工作4.模型4.1 GCN4.2 approximating relation representations4.3 joint entity and relation alignmentHGCN: “Jointly Learning Entity and Relation Representations for Entity Alignment”. Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wa…

Science:海马中如何实现选择性地招募神经元来巩固记忆?

来源:brainnews作者:brainnews创作团队神经元网络活性的标志是选择性地将神经元招募到活跃的集合中,形成暂时稳定的活动模式。在哺乳动物的海马体中这种神经元集合在ripples(~200Hz)振荡期间反复激活,支持空…

往年笔试题

文章目录1 概率1.1 条件概率.每天9点到10点,小明和小红在同一个车站乘坐公交车上班。小明坐101路公交车,每5分钟一班{9:00, 9:05, 9:10, …};小红坐102路公交车,每10分钟一班{9:00, 9:10, 9:20, …},问小明和小红每天相…

量子生物学的未来:量子理论如何帮助理解生命?

导语2022年诺贝尔物理学奖授予了关于量子信息科学的基础性研究。一百多年前,量子革命为我们带来了晶体管和激光,今天,基于量子信息的新技术正在让我们进入一个新的量子信息时代。事实上,已有研究表明,在生命过程中也存…

【量化投资1】

文章目录0.相关包及常识1.股票买卖收益分析2.双均线策略2.1 均线2.2 双均线2.2.1 金叉死叉的获取量化投资0.相关包及常识 股票的买入卖出:最少为一手,100股 tushare open:开盘价格,close:收盘价格 1.股票买卖收益分析 每次至少买入1手最后…

超高效人工光电神经元成真?速度比自然神经元快3万倍,研究登Nature子刊

来源:悦智网作者:Charles Q. Choi翻译:机器之心原文链接:https://spectrum.ieee.org/neuromorphic-computing-superconducting-synapseAI系统越来越受限于为实现其功能的硬件。现在,一种新的超导光子电路问世&#xff…

2022年工业机器人的5大应用行业

来源:工业机器人前言截止至2022年,在中国60%的工业机器人应用于汽车制造业,其中50%以上为焊接机器人;在发达国家,汽车工业机器人占机器人总保有量的53%以上。‍本文梳理了五大应用行…

【java spring学习1】IOC理论,spring用DI实现IOC

狂神说java spring:让java 开发更容易 IOC:控制反转 AOP:面向切面编程(业务面) 2. spring组成和扩展 2.1spring 组成 Sprint AOP ORM:对象关系映射 Context:UI界面、邮件验证等 2.4 拓展 学习路线: spring boot:构…

深度学习以最佳纳米尺度分辨率解决重叠单个分子的3D方向和2D位置,生成蛋白质图片...

编辑 | 萝卜皮偶极扩散函数 (DSF) 工程重塑了显微镜的图像,可以最大限度地提高测量偶极状发射器 3D 方向的灵敏度。然而,严重的泊松散粒噪声、重叠图像以及同时拟合高维信息(包括方向和位置)使单分子定向定位显微镜(SM…